
Version 0.4 (2013-01-06)

History

Version Date Author Description
0.1 2011-11-16 A. Geisler First public release
0.2 2011-12-29 A. Geisler, S. Adamczyk Second public release
0.3 2012-01-06 A. Geisler, S. Adamczyk, M. Wilkens Third public release
0.4 2013-01-06 A. Geisler Fourth public release

ii

Overview

This document is about developing software in C and C++ for MorphOS1. The first chapter
deals with the MorphOS SDK, the MorphOS platform specific features and the provided tools
in general. The MorphOS SDK is available for free on the official MorphOS website. Pro-
gramming native graphical user interfaces for MorphOS using MUI is the topic of the second
chapter. Chapter three describes Reggae, the native MorphOS multimedia framework. The
last chapter takes a clother look to the MorphOS memory management and how to write
your own startup code.

All texts, source codes, examples and pictures within this document are directly taken from
tutorials published at Morphzone’s library2 by several authors. Many thanks to all the guys
who spent a lot of time on writing these great tutorials. This document doesn’t claims itself
to be up to date at any time. If you want to ensure reading the latest version of the tutorials
please go directly to Morphzone3.

If you like or dislike this document, if you find some misspelling, broken formatting or other
noticable problems don’t hesitate to write an email to:

André Geisler, eliot@exception-dev.de

Please do not send me any questions about contents in this document. For technical ques-
tions and discussions please join the forum at Morphzone.

Latest version of this document can found at:
http://www.exception-dev.de/projects/mosprogrammingguide/mos p guide de.html

Additional notes to version 0.1: This is first of public release of the MorphOS programming
guide. The “Taglists” section is outdated and the chapter about “Excec Lists” is missing at
the moment. They will be updated/added in very near future. More chapters will be added in
future releases (e.g. Reggae: MorphOS multimedia framework, An Introduction to MorphOS
PPC Assembly), so stay tuned!

Addional notes to version 0.2: The second public release provides updated “Taglists” sec-
tion, additonal section about “ExecLists” and a new chapter about the MorphOS multimedia
framework “Raggae”.

1http://www.morphos.de
2http://library.morphzone.org/Main Page
3http://www.morphzone.org

iii

mailto:eliot@exception-dev.de
http://www.exception-dev.de/projects/mosprogrammingguide/mos_p_guide_de.html
http://www.morphos.de
http://library.morphzone.org/Main_Page
http://www.morphzone.org

Addional notes to version 0.3: The third release provides one new chapter about the new
MorphOS memory system introduced in MorphOS 2.0 and some small changes in layout.
The most noticeable change is the new cover which was designed by Matthias “Aramon”
Wilkens. At this point many thanks to Matthias for his great work!
Due the fact that there is now at least one chapter which does not concern to MorphOS pro-
gramming directly, this guide is renamed from “MorphOS Programming Guide” to “Mor-
phOS Developer Guide”.

Addional notes to version 0.4: After exactly one year a new version of MorphOS De-
veloper Guide is available. There is a new chapter about writing your own startup code and
the chapter about the compiler is updated because of some minor changes in the current
SDK.

iv

Contents

1 First steps in MorphOS programming 1
1.1 Installation of Software Development Kit and its basic usage 1

1.1.1 Installing the SDK . 1
1.1.2 Choosing a Compiler . 2
1.1.3 Standard C and C++ Libraries . 3

1.2 The First Traditional ”Hello world!” . 4
1.2.1 ”Hello World!” With the Standard C Library 4
1.2.2 ”Hello World!” With the MorphOS Native API 5

1.3 Useful Compiler Options . 6
1.3.1 Compiling and linking . 6
1.3.2 Options order . 6
1.3.3 Warning options . 7
1.3.4 Linker options . 7
1.3.5 Optimization options . 7

1.4 MorphOS API and Its Organization . 8
1.4.1 Libraries Overview . 8
1.4.2 How to Use a Library in an Application 9
1.4.3 Manual Library Opening and Closing 10

1.5 Common Concepts . 11
1.5.1 Exec Lists . 11

1.5.1.1 Introduction . 11
1.5.1.2 From a Plain List to Exec List 12
1.5.1.3 Exec List Elements: Node and Header 13
1.5.1.4 List Initialization, Empty List Check 15
1.5.1.5 List Iterator . 16
1.5.1.6 Removing List Items From Inside of an Iterator 17
1.5.1.7 Adding and Removing Items 18
1.5.1.8 Head and Tail . 19
1.5.1.9 Functions or Macros? . 19
1.5.1.10 Enqueueing . 19

1.5.2 Taglists . 20
1.5.2.1 Passing Taglists to Functions 20
1.5.2.2 Special Tags . 21
1.5.2.3 Traversing Taglists With NextTagItem() 23
1.5.2.4 Taglists Processing . 23
1.5.2.5 Finding Tags and Data . 23
1.5.2.6 Creation and Copying . 24
1.5.2.7 Filtering and Mapping . 26
1.5.2.8 Filtering Tags by Identifier . 26

v

1.5.2.9 Tag Mapping . 26
1.5.2.10 Filtering Tags Data . 28
1.5.2.11 Data Conversion . 29
1.5.2.12 Bitfields . 29
1.5.2.13 Structures . 29

2 Magic User Interface Programming 33
2.1 Introduction . 33
2.2 The First Steps . 34

2.2.1 Short BOOPSI Overview . 34
2.2.1.1 Object Oriented Programming 34
2.2.1.2 Classes . 35
2.2.1.3 Methods . 36
2.2.1.4 Setting an attribute . 37
2.2.1.5 Getting an attribute . 38
2.2.1.6 Object construction . 39
2.2.1.7 Object destruction . 40
2.2.1.8 MUI Extensions to BOOPSI 41

2.2.2 Event Driven Programming, Notifications 41
2.2.2.1 Event Driven Programming 41
2.2.2.2 Notifications in MUI . 42
2.2.2.3 Reusing Triggering Value . 44
2.2.2.4 Notification loops . 45
2.2.2.5 The ideal MUI main loop . 46

2.2.3 ”Hello World!” in MUI . 47
2.3 Subclassing . 49

2.3.1 General Rules and Purpose of Subclassing 49
2.3.1.1 Introduction . 49
2.3.1.2 Object Data . 50
2.3.1.3 Writing Methods . 50
2.3.1.4 The Dispatcher . 51
2.3.1.5 Class Creation . 53
2.3.1.6 Class Disposition . 53

2.3.2 Overriding Constructors . 54
2.3.2.1 Objects with child objects . 55

2.3.3 Overriding Destructors . 56
2.3.4 Overriding OM SET() . 57
2.3.5 Overriding OM GET() . 58
2.3.6 Subclassing Application Class . 59
2.3.7 MUI Subclassing Tutorial: SciMark2 Port 59

2.3.7.1 The application . 59
2.3.7.2 Code inspection . 60
2.3.7.3 GUI design . 61
2.3.7.4 Methods and attributes . 62
2.3.7.5 Implementing functionality 63
2.3.7.6 Final port . 64

2.4 Useful Techniques . 64
2.4.1 Locating Objects in the Object Tree . 64
2.4.2 Text Class: Buttons, Textfields, Labels 65

vi

2.4.2.1 Introduction . 65
2.4.2.2 Common attributes . 66
2.4.2.3 Labels . 66
2.4.2.4 Textfields . 67
2.4.2.5 Buttons . 67

3 Reggae: MorphOS multimedia framework 69
3.1 Introduction . 69
3.2 Overview . 70

3.2.1 Kinds of Reggae classes . 70
3.2.1.1 Multimedia.class . 70
3.2.1.2 Streams . 70
3.2.1.3 Demuxers . 70
3.2.1.4 Decoders . 71
3.2.1.5 Filters . 71
3.2.1.6 Encoders . 71
3.2.1.7 Muxers . 71
3.2.1.8 Outputs . 71
3.2.1.9 Internal classes . 72

3.2.2 Reggae common formats . 72
3.2.2.1 Audio common formats . 72
3.2.2.2 Video common formats . 72

3.3 Tutorials . 73
3.3.1 General . 73

3.3.1.1 Accessing Reggae in applications 73
3.3.1.2 Downloading web resources with http.stream - basics 75
3.3.1.3 Writing Reggae classes . 84

3.3.2 Audio . 85
3.3.2.1 Playing a sound from file . 85
3.3.2.2 Playing a sound from memory 92
3.3.2.3 Playing a continuous, synthesized wave 96

4 Additional 101
4.1 In-depth: The New MorphOS Memory System 101

4.1.1 Foreword . 101
4.1.2 Compatibility . 101
4.1.3 Reducing Effects of Fragmentation . 103
4.1.4 Reducing Memory Fragmentation . 103
4.1.5 The Implementation . 103

4.2 Writing Custom Startup Code . 104
4.2.1 Forword . 104
4.2.2 Reasons for Writing Own Startup . 105
4.2.3 Let’s Write It . 105
4.2.4 $VER: - program identification string 109
4.2.5 A Complete Example . 109

vii

List of Figures

1.1 Screenshot of Snoppium . 4
1.2 A plain, bidirectional list. A node consists of ”prev” and ”next” pointers. 12
1.3 Bidirectional list with head and tail pseudoitems. 13
1.4 The Exec list. Head and tail pseudoelements are merged into the list header. 13
1.5 An empty list . 15
1.6 Inserting an item into an Exec list. 18
1.7 A simple taglist . 20
1.8 Ignored tag entry . 22
1.9 Joining two taglists . 22
1.10 Skipping entries of a taglist . 22
1.11 Filtering a taglist with TAGFILTER AND mode. All tags not present in the tag

array are rejected. 26
1.12 Filtering a taglist with TAGFILTER NOT mode. All tags present in the tag array

are rejected. 26
1.13 Mapping red tags to blue tags with keeping unmapped ones 27
1.14 Mapping red tags to blue tags with removing unmapped ones 27
1.15 Principles of ApplyTagChanges() . 28
1.16 Principles of FilterTagChanges() . 28
1.17 Example of a bitfield . 29

2.1 MUI application example screenshot . 33
2.2 MUI application example screenshot . 34
2.3 Execution flow of an event driven program . 42
2.4 Screenshot of HelloWorld in MUI . 47
2.5 Flowchart of CoerceMethod() . 55
2.6 Screenshot of Scimark with no options . 60
2.7 Screenshot of Scimark with options . 60
2.8 Screenshot of Scimark 2 GUI . 61
2.9 Screenshot of label alignment . 66

viii

Chapter 1

First steps in MorphOS programming

Author: Grzegorz Kraszewski
Source: http://library.morphzone.org/First steps in MorphOS programming

This is a tutorial for people who want to start writing applications for MorphOS. It is as-
sumed that the reader knows C or C++ language, but has no (or very limited) experience in
programmimg for MorphOS or Amiga systems.

1.1 Installation of Software Development Kit and its basic
usage

1.1.1 Installing the SDK

The official MorphOS SDK provides a complete environment for creating programs for MorphOS.
It contains the following components:

• MorphOS includes (for the MorphOS native API).

• Standard C and C++ library includes.

• MorphOS API documentation and example code.

• Two GCC compilers: 2.95.3 and 4.4.5.

• GCC toolchains (one for each compiler), sets of developer utility programs.

• Scribble, a powerful programmer’s text editor.

• Perl scripting language (used by some SDK tools).

The first step of installation is to download the SDK archive from the morphos.net1. The SDK
is delivered as a LHA archive, which must be depacked before proceeding. The easiest way
is to open a context menu for the archive (with the right mouse button in an Ambient win-
dow) and choose Extract. After depacking a directory named morphossdk is created with an

1http://www.morphos.de

1

http://library.morphzone.org/First_steps_in_MorphOS_programming
http://www.morphos.net

Installer application and a big file named sdk.pack inside. Installation is started by running
Installer. The only user choice that is needed here is to choose an installation directory.
Then there is some time spent watching the progress bar...

After the installation a system reboot may be needed to update system assigns and paths.

1.1.2 Choosing a Compiler

As mentioned above, the SDK delivers two GCC compilers: the old but trusty 2.95.3 and the
modern 4.4.5. There is a script named GCCSelect in the SDK, which allows fast switching
between compilers. Just type in a shell window

GCCSelect 2.95.3

or

GCCSelect 4.4.5

to change the current compiler. GCCSelect works by making symbolic links to the proper
version of GCC and it’s tools, so the compiler is always called as gcc or g++, regardless of
the version chosen currently.

Which one to choose? It depends on the code compiled and other constrains. Here is
some guidance:

• 2.95.3 version compiles faster and consumes less memory.

• For old code 2.95.3 would be better, as 4.4.5 will produce tons of warnings or even
errors on code being flawlessly compiled by the old GCC.

• For new projects, especially written in C++, GCC 4.4.5 is recommended, as the old
ones simply do not keep up with modern standards.

• 4.4.5 usually produces faster code (but sometimes also bigger, depending on optimizer
options).

• 4.4.5 is a relatively new and complex compiler, may contain more bugs than 2.95.3.

My general advice is to use GCC 4 and only switch to GCC 2 if needed.

One can check which compiler is currently active using the -v compiler option, which dis-
plays the compiler version and build options:

1 MorphOS:Development> GCCSelect 2.95.3
2 Switching default gcc links to the gcc 2.95.3 package
3 MorphOS:Development> gcc -v
4 Reading specs from /gg/lib/gcc-lib/ppc-morphos/2.95.3/specs
5 gcc version 2.95.3 20050425 (release/emm-zapek-cisc)
6 MorphOS:Development> GCCSelect 4.4.5
7 Switching default gcc links to the gcc 4.4.5 package
8 MorphOS:Development> gcc -v

2

9 Using built-in specs.
10 Target: ppc-morphos
11 Configured with: ../configure --target=ppc-morphos --with-ld=/gg/ppc-morphos/bin/ld
12 --with-nm=/gg/ppc-morphos/bin/nm --with-as=/gg/ppc-morphos/bin/as
13 --with-strip=/gg/ppc-morphos/bin/strip
14 --with-gmp=/Temp/cvs.morphos.net/morphos/morphoswb/development/gcc4/local_libs
15 --with-mpfr=/Temp/cvs.morphos.net/morphos/morphoswb/development/gcc4/local_libs
16 --enable-languages=c,c++ --prefix=/gg --with-sysroot=/gg --libexecdir=/gg/lib
17 --oldincludedir=/gg/include --program-prefix=ppc-morphos- --program-suffix=-4.4.5
18 --enable-threads=morphos --disable-bootstrap --with-pkgversion=GCC/MorphOS
19 --with-bugurl=http://www.morphos-team.net --enable-version-specific-runtime-libs
20 Thread model: morphos
21 gcc version 4.4.5 (GCC/MorphOS)

1.1.3 Standard C and C++ Libraries

These standard libraries are parts of the C and C++ language specifications respectively.
They mainly deliver file and console input/output functions, mathematic functions and string
operations. The C++ library also provides a set of basic container classes.

• C standard library on Wikipedia 2

• C++ standard library on Wikipedia 3

There are two ways to access these libraries on MorphOS. The first (and default) one is
by using a MorphOS shared library; ixemul.library. As the name suggests, this library tries
to provide some Unix environment emulation on MorphOS, which, other than the standard
libraries, includes large part of POSIX 4 standard and some other commonly used functions.
ixemul.library is usually used for porting big projects from the Unix/Linux world, for example
it is used by GCC itself and many other tools in the SDK.

The second way is to use libnix (as in; lib no ixemul). In contrast to ixemul.library, libnix
is statically linked with the application. This is the preferred way for providing standard li-
braries for MorphOS native applications. It is achieved by passing the -noixemul flag to the
compiler and the linker. libnix delivers full C and C++ standard libraries, but its POSIX im-
plementation is less complete.

Another alternative is to not use standard libraries at all. It may sound crazy at first, but
the MorphOS native API provides complete file and console I/O as well as some string
manipulation functions and many mathematic functions. Using the native API makes appli-
cations faster and smaller in size. On the other hand code using the MorphOS API directly is
not portable to non-Amiga(like) systems. A -nostdlib compiler option instructs the compiler
to not link the code with the standard library. Note that this requires also writing your own
custom startup code.

2http://en.wikipedia.org/wiki/C standard library
3http://en.wikipedia.org/wiki/C++ Standard Library
4http://en.wikipedia.org/wiki/Posix

3

http://en.wikipedia.org/wiki/C_standard_library
http://en.wikipedia.org/wiki/C++_Standard_Library
http://en.wikipedia.org/wiki/Posix

1.2 The First Traditional ”Hello world!”

1.2.1 ”Hello World!” With the Standard C Library

With the standard C library, one can use the ”Hello World!” example exactly as found in a C
handbook. It is given below, just for completeness:

1 #include <stdio.h>
2

3 int main(void)
4 {
5 printf("Hello World!\n");
6 return 0;
7 }

This source may be copied to a text editor and saved as helloworld.c. To compile it, one
opens a shell window (from the Ambient menu, or using the rcommand + n key combo) and
changes current directory to the one, where the C source is located. The compiler is run as
follows:

gcc -o helloworld helloworld.c

The compiler produces a helloworld executable, which is 10340 bytes on my system. Note
that MorphOS pays little attention to filename extensions, so ending the executable name
with .exe is not needed, however, it can be done. Traditionally MorphOS executables are
named without any extensions. The -o compiler option specifies a desired executable name.
If this option is not given, the executable will be named a.out (for some historical reasons).

As stated in the SDK section, the standard C library will be provided by ixemul.library. It can
be easily confirmed by tracing the disk activity of helloworld using the Snoopium tool. It can

Figure 1.1: Screenshot of Snoppium

also be seen that many other libraries are also opened including ones related to TCP/IP net-
working. It looks like overkill for such a small program. This happens, because ixemul.library

4

creates a complete unixlike environment for the application, which is not needed in this sim-
ple case. That is why the libnix alternative is recommended for use of the standard library.
To use it, a -noixemul option has to be added, so the compiler is called as follows:

gcc -noixemul -o helloworld helloworld.c

The generated executable is much larger (30964 bytes here), which just confirms the fact,
that libnix, which is now in use, is a statically linked library. Size of functions used adds to the
size of the executable. Every C handbook states, that printf() is the most expensive function
of standard I/O, which has just been proven experimentally... On the other hand program
activity, as traced with Snoopium, is reduced to three entries. No external resources are
opened.

1.2.2 ”Hello World!” With the MorphOS Native API

The MorphOS API (Application Programmer Interface) provides complete file and console
input/output. In fact, functions in C and C++ standard libraries are, more or less, complex
wrappers around MorphOS native calls. Using the native API has the following advantages:

• Programs are much shorter.

• Programs are faster, thanks to stripping some layers of abstraction.

• Programs are less resource hungry.

• Native API gives full access to MorphOS specific features.

These advantages come at a price:

• Programs using the native API are not portable (except for porting to AmigaOS and
AROS to some degree).

• Native printf()-like functions do not support floating point numbers.

The ”Hello World!” example using the native API is as follows:

1 #include <proto/dos.h>
2

3 int main(void)
4 {
5 Printf("Hello World!\n");
6 return 0;
7 }

The included header includes all things needed to use the dos.library, where the Printf()
function is located. The function itself works the same as the standard library printf(), with
some minor differences. The code is compiled with this command:

gcc -noixemul -o helloworld helloworld.c

5

The command is the same as that used for the program using libnix and the standard library
printf(), however, the standard C function is not used, so it is not linked. Now the executable
size reduces to 13500 bytes.

Why is libnix still needed in spite of the standard library calls not being used? Can’t one
just compile with -nostdlib? Other than the standard C library, libnix also provides applica-
tion startup code. A program without this startup code can still work when launched from the
shell, but will crash when started from Ambient. The startup code also provides an automatic
MorphOS library opening and closing feature. So, excluding libnix completely is possible, but
requires writing your own startup code and handling library opening and closing manually.

Note: excluding libnix is usually done for MorphOS components other than applications,
like shared libraries or Reggae and MUI public classes. It can also be done for ordinary
programs just to make them shorter, especially if a program is small. For bigger projects
bytes saved by writing custom startup code are not usually worth the effort.

1.3 Useful Compiler Options

The GCC compiler has hundreds of options. Some of them are irrelevant for typical usage,
some of them are irrelevant for PowerPC architecture. This article presents a set of common
options used when compiling MorphOS programs. For detailed descriptions of all options
see the GCC manual5.

1.3.1 Compiling and linking

For every project consisting of more than one source file, the process of building the exe-
cutable program is divided into two stages: compiling and linking. Compilation turns every
source code file into an object file. Linking merges all object files (and static libraries) into
the final executable. For simple single file projects, these two stages merge into one.

Both the stages have different options. Some options are relevant only for compiling, some
only for linking, and some are important for both. Fortunately option names never overlap.
Then the safe solution is to pass all the desired options for both stages. Irrelevant ones will
be simply ignored.

1.3.2 Options order

The order of passing options to GCC is not important in general. There are some critical
exceptions however. The most common one is order of passing static libraries to the linker.
Let’s assume linking with two static libraries libfoo.a and libbar.a. This requires passing -lfoo
-lbar parameters to the linker. However, in the case where libbar uses functions from libfoo,
the -lfoo option must be passed after the -lbar option. The linker will be left with unresolved
symbols in libbar otherwise.

5http://gcc.gnu.org/onlinedocs

6

1.3.3 Warning options

These options control warnings issued by the compiler on some potentially dangerous lan-
guage constructs. While some programmers complain about the compiler being too picky,
it is recommended to turn most of these options on. It can save hours of time wasted on
debugging...

-Wall, turns on warnings for typical potentially dangerous language constructs. Example
ones are using a value of assignment as a logical condition, or using arithmetic on void*
pointers. While syntactically legal, such constructs may be a result of mistyping, and even
when used intentionally, may produce errors that can be very hard to debug. This option is
a must for any reasonable programmer.

-Wextra, turns on even more warnings (this option is -W in GCC 2.95.3). There is no serious
reason to not use this option together with -Wall.

Note: GCC4 has an irritating feature. String literals are assumed to be arrays of fixed char
type. Almost all the MorphOS API functions expect strings to be of type STRPTR which is
a typedef of unsigned char*. Passing literals to these functions produces tons of warnings.
The clean way to avoid it, is to explicitly cast every literal passed to the MorphOS API as
STRPTR. An alternative is to suppress these warnings with -Wno-pointer-sign. The disad-
vantage of this second solution is that it also suppresses pointer signedness warnings for all
other integer types, not only for char.

1.3.4 Linker options

-noixemul, instructs the linker to use the static libnix library for standard C/C++ functions
and startup code. Without this parameter, the shared library ixemul.library is used.

-s, instructs the linker to strip debug information and symbol tables. This information is
not needed in a release executable. Stripping them lowers the executable size significantly.

1.3.5 Optimization options

-On, where n ranges from 0 to 3. The parameter is a global control of execution speed
optimizer. Higher numbers make the optimizer more aggressive. -O2 seems to be the best
for everyday use. -O3 turns on many optimizations which can significantly increase the
executable size. Good programmers optimize their algorithms in the first place, compiler
optimizations can’t fix design errors...

-Os, turns on executable size optimization, at the cost of execution speed. Not very use-
ful for typical applications.

7

1.4 MorphOS API and Its Organization

An Application Programmer Interface of an operating system usually consists of thousands
of functions. MorphOS is no exception here. Its kernel is not monolithic however. The API is
functionally (and physically) divided into libraries. Only a few of the largest libraries contain
more than 50 functions. A core set of the most important libraries is contained in the system
boot image. The rest are placed on the system partition in MOSSYS:Libs (libraries delivered
with the system) and SYS:Libs (third party libraries) directories. Disk based libraries are
loaded on demand. All these libraries are shared, which means all processes using a library
execute the same code loaded to memory once.

1.4.1 Libraries Overview

MorphOS comes with over 100 different libraries. Not all of them are listed below, just the
most common ones. Browse the system autodocs in the SDK for more.

• exec.library, the master library. This is the system core, responsible for process
scheduling, control and creation, communication between processes, memory man-
agement, managing other libraries and overall system control. This is the only library
which is always open and cannot be closed.

• dos.library, responsible for file and console input/output. Provides an interface to
advanced filesystem functions (like scanning directories for example). Cooperates with
the exec.library in process creation. Delivers basic system time services.

• graphics.library, is responsible for low-level graphics functions like drawing pixels and
other primitives, copying rectangular blocks of display, scrolling etc. Many programs do
not use it directly.

• intuition.library, delivers intermediate level graphics interface objects like screens
and windows. Interfaces to user input devices (mouse and keyboard to name a few).
Provides very basic user controls (gadgets). Provides also BOOPSI (Basic Object
Oriented System for Intuition), a language independent object oriented programming
framework, used commonly by other components.

• muimaster.library, the main interface to MUI (Magic User Interface), which is the
MorphOS high level GUI toolkit. Provides a complete, object oriented framework
(based on BOOPSI) for GUI driven applications and a rich set of GUI objects.

• locale.library, is responsible for system and application internationalization. This sim-
ple yet powerful subsystem allows for supporting multiple language versions of a pro-
gram with a single executable, also provides localization data such as date format,
local currency, timezone, number grouping and more.

• bsdsocket.library is an interface for TCP/IP networking, compatible with BSD sockets.
What is unusual with this library, is that it is neither built into the kernel, nor placed on
disk. The TCP/IP stack creates it in memory dynamically.

8

1.4.2 How to Use a Library in an Application

In typical cases it is pretty automatic. The only thing which has to be done is including
the main library header file, which is <proto/[libname].h>, for example <proto/exec.h>,
<proto/muimaster.h> and so on. Library opening and closing is handled automatically by
the startup code provided by either libnix or ixemul.library. Then one can just use functions
from the library. A few big libraries have separate subdirectories in the system include tree.
Examples of such libraries are exec.library, dos.library and graphics.library. Header files in
these directories contain definitions of constants, data structures, attributes etc. used by the
library, divided by functionality. Including of these headers depends on which functions are
used in the application, for example to use exec.library memory allocation functions one has
to include the <exec/memory.h> header.

Other libraries have a single header file in the libraries directory. Examples are<libraries/locale.h>
or <libraries/mui.h> (the latest is some deviation from the naming rule). This single header
may be automatically included from the proto file or not.

There are a few cases, where automatic library handling does not work, or cannot be used.

• Third party libraries. Most of them are not included in the autoopen feature.

• Custom startup code (linking with -nostartfiles).

• Opening libraries in a subprocess.

• Dynamic on-demand library opening.

• The library base has been defined in the application code. Autoopening for this library
is automatically disabled in this case.

In all of these cases, libraries have to be handled manually.

9

1.4.3 Manual Library Opening and Closing

While not as convenient as automatic handling, manual opening and closing of libraries is
not very complicated. A library base variable has to be defined, then two functions from
exec.library: OpenLibrary() and CloseLibrary() have to be used.

The library base is defined in its proto file (the main header) as a global variable. It is a
pointer to a Library structure, which should be treated as an opaque pointer. The result re-
turned by OpenLibrary() should be placed in the library base before any function of the library
is called. Then, when the library is no longer needed, it should be closed with CloseLibrary()
using its base as the argument. The layout for using the hypothetical foobar.library is as
follows:

1 /* inside <proto/foobar.h> */
2 struct Library *FoobarBase;
3

4 /* inside application */
5 #include <proto/foobar.h>
6 if (FoobarBase = OpenLibrary((STRPTR)"foobar.library", 7)) {
7 /* use library functions here */
8 CloseLibrary(FoobarBase);
9 }

The OpenLibrary() call takes two parameters. The first one is just the name of the library
to be opened. It is only the name, without path. MorphOS searches a few locations for the
library in the following order:

• MOSSYS:Libs/

• LIBS:

• current directory of the application

• PROGDIR:Libs/

In the fourth path PROGDIR: is an automatic assign pointing to the directory containing the
application executable.

The second parameter of OpenLibrary() is the minimum required version. Zero here opens
any version, any positive number means ”this version or higher”. There is no straightforward
way for requesting a particular version of a library. It can be noticed that this approach only
works if newer versions of a library are always backward compatible with older ones. On the
other hand it avoids having multiple versions of the same library in the system, which is a
common problem with Linux shared objects.

The value returned by OpenLibrary() should be always checked against NULL. Even a library
built into the boot image may fail to open (because of a memory shortage for example, or
having too low a version). Printing some error message in case of a fail is definitely a good
idea.

Every successful OpenLibrary() call must be matched with CloseLibrary(). Resource leak is

10

created otherwise.

There are two special cases for manual library opening and closing: exec.library and dos.library.
The first one is always open and cannot be closed, as stated above. The library base for
it (named SysBase) is defined and initialized in the startup code. If declared manually in
an application’s source code, it should be declared as an extern. The dos.library is opened
and closed as with any other library, but because the startup code needs it, the DOSBase
is already defined and initialized there. As a result the application does not need to open
dos.library before using it. If declared in an application, DOSBase should be an extern too.

As with the Amiga historical heritage, some of the most important library bases (SysBase,
DOSBase, IntuitionBase, GfxBase and a few more) are not defined as struct Library* but
as pointers to library specific structures. Direct poking of these structures was unavoid-
able in early AmigaOS versions. In MorphOS it is neither needed nor recommended. One
can avoid the above definitions (which forces unnecessary typecasting in OpenLibrary() and
CloseLibrary()) by #defining NOLIBBASE symbol before including proto files. This dis-
ables library bases definitions. All bases can (and must) be then explicitly defined in the
code as pointers to struct Library.

Also for traditional reasons, names of some library bases do not follow the [Libname]Base
scheme. The most important deviations are: SysBase for exec.library, DOSBase for dos.library
(capitalization), GfxBase for graphics.library, MUIMasterBase for muimaster.library (capi-
talization), CyberGfxBase for cybergraphics.library. In any case the base name can be
checked by looking at the library proto header.

Using the proper base name is very important, as it is used as an implicit argument in
all the calls of library functions.

1.5 Common Concepts

This chapter explains some programming techniques and constructs used in MorphOS.

1.5.1 Exec Lists

1.5.1.1 Introduction

A list is the simplest dynamic data structure. An array is even simplier, but it is not dynamic.
Adding a single item to an array requires reallocation of memory and copying the whole
old contents, similarly for removing. Inserting and removing elements to a list is very fast
operation and its computational costs do not increase with number of items. Because of this,
list is the basic structure used in exec.library, the MorphOS kernel. One could say the Exec
is built on lists. Lists are also used through all the system to manage processes, windows,
screens, devices, DOS volumes, fonts, libraries and more. Of course lists are also used by
applications to manage dynamic data. Many more sophisticated data structures are built on
lists. For all these reasons understanding lists and their MorphOS flavour is essential for
every programmer.
Lists may be divided to intrusive and nonintrusive ones. An intrusive list is one requiring that

11

every list item contains a part called a node. The node is then used for linking items into
list. A nonintrusive list creates nodes itself. Both kinds have their advantages. Exec lists
are intrusive. Why? For a nonintrusive list adding an item means allocating memory for its
node. Exec lists are often used at really low levels of the system, like interrupt handling,
process scheduler or input/output hardware devices. Calling memory allocator from there is
unacceptable. Also error handling would become a nightmare (every memory allocation can
fail...). In some parts of the system lists also have to be extremely fast. Memory allocation
is a complex operation and can’t be expected to finish in a few processor cycles. Of course
on higher levels of the system, intrusiveness has more disadvantages than advantages. For
example an item of intrusive list cannot be added to more than one list. Then high level
components (for example MUI List class) may be nonintrusive ones.

1.5.1.2 From a Plain List to Exec List

The simplest form of list is a unidirectional one. Node of every item consists only of pointer
to the next element. The list is identified by keeping a pointer to its first item. Unidirectional
lists however are used only in special cases. While inserting an element at list start is easy,
inserting at end requires traversing the whole list. Time of this operation increases linearly
with number of items. It is also not possible to traverse the list in the backward direction.
Then bidirectional lists are much more common. Exec lists are bidirectional. Every node
contains two pointers: one to the next element and one to the previous element. For the
first element pointer to the previous one is NULL. For the last one, pointer to the next one is
NULL. If a list user keeps pointers to both the first and the last element, she has symmetrical
access to the start and the end of the list. While the idea is still simple, we have to complicate

Figure 1.2: A plain, bidirectional list. A node consists of ”prev” and ”next” pointers.

it a bit. As mentioned before, the list user keeps track of it by maintaining two pointers: to
the first and the last item. These pointers will be modified every time an item is added or
removed at the start or end of the list respectively. But what if a list has multiple users
not knowing about each other? Adding an item at the start or at the end would require
pointer update for all the users. To solve the problem, two artificial items are introduced: a
list head and a list tail. Those two elements do not carry payload, only consist of a node.
Their location does not change during the list lifetime so they work as anchors. Inserting an
element at list start is in fact inserting it between the list head and the former first element.
Similarly element inserted at end is in fact inserted between the former last element and
the list tail. As pointers to the head and the tail are constant, they may be shared between
multiple users. Exec lists combine the list head and the list tail into one structure, named
list header. As the Exec was designed in the days when computer memory was counted
in kilobytes rather than gigabytes, designers saw a way to save a few bytes. The ”previous”
field of list head node always contains NULL. Similarly the ”next” field of the list tail always

12

Figure 1.3: Bidirectional list with head and tail pseudoitems.

contains NULL. Then they can be merged into one. That is why the list header contains only
three pointers instead of four. For the C language the list header is defined as struct List and
lists are commonly referenced by a pointer to it.

Figure 1.4: The Exec list. Head and tail pseudoelements are merged into the list header.

1.5.1.3 Exec List Elements: Node and Header

Exec defines two kinds of nodes: a full one and a minimal one. The minimal node consists
only of pointers to the next and the previous item and is defined in C in <exec/nodes.h>
header file as follows:

1 struct MinNode
2 {
3 struct MinNode *mln_Succ; // successor, the next item
4 struct MinNode *mln_Pred; // predecessor, the previous item
5 };

The full node has additional fields used in many system lists. These fields are: item name,
item type and item priority.

1 struct Node
2 {
3 struct Node* ln_Succ; // successor
4 struct Node* ln_Pred; // predecessor

13

5 UBYTE ln_Type; // item type
6 BYTE ln_Pri; // item priority
7 char* ln_Name; // item name
8 };

Additional node fields have meaning only for system lists and may be considered as part
of payload. If we ignore C types, a Node is just a MinNode with three fields added at the
end. Node priority may be used to implement ordered lists or queues. Exec.library provides
functions for ordered item insertion.
As there are two kinds of nodes, there are also two types of list headers. Both are defined
in <exec/lists.h>:

1 struct MinList
2 {
3 struct MinNode* mlh_Head; // pointer to the first real item
4 struct MinNode* mlh_Tail; // merged head "previous" and tail "next"
5 struct MinNode* mlh_TailPred; // pointer to the last real item
6 };

Header for full nodes has additional type field (used for system lists) and one byte padding
to make the structure size even.

1 struct List
2 {
3 struct Node* lh_Head; // pointer to the first real item
4 struct Node* lh_Tail; // merged head "previous" and tail "next"
5 struct Node* lh_TailPred; // pointer to the last real item
6 UBYTE lh_Type;
7 UBYTE lh_pad;
8 };

Again, when one ignores C types, the List structure is MinList with two extra fields.
As Exec lists are intrusive, a custom item structure must contain MinNode (or Node if
needed) as the first field. It must be a complete structure, not a pointer. Here is an ex-
ample:

1 struct MyNode
2 {
3 struct MinNode Node; // must be the first
4 struct Whatever Foobar; // example payload fields
5 ULONG Something;
6 char MoreData[10];
7 /* ... */
8 };

There is no limit on custom item size. As items are not copied, big items are manipulated
with exactly the same speed as small ones.

14

1.5.1.4 List Initialization, Empty List Check

The list header, which is either List or MinList structure must be initialized before use. Please
note well:

Note: Clearing List to all zeros is NOT a proper Exec list initialization!

Looking at the diagrams above, we know how an empty list should look like:

Figure 1.5: An empty list

An empty list contains only its head and tail, both merged into the header. When one splits
them back in mind, initialization becomes obvious:

• The ”next” field of the head points to the tail.

• The ”prev” field of the head is NULL.

• The ”next” field of the tail is NULL.

• The ”prev” field of the tail points to the head.

Then the second and the third operation merge into one, as fields are merged. Following
code performs proper Exec list initialization. Note the address operators &, forgetting them
is a common mistake:

1 struct MinList mylist;
2

3 mylist.mlh_Head = (struct MinNode*)&mylist.mlh_Tail;
4 mylist.mlh_Tail = NULL;
5 mylist.mlh_TailPred = (struct MinNode*)&mylist.mlh_Head;

In case of full List, initialization is the same, just typecasts have Node instead of MinNode.
List initialization is a common operation, so <exec/lists.h> defines a NEWLIST macro for it.
The macro takes a pointer to List or MinList, so for the above example it would be called as
follows:

1 NEWLIST(&mylist);

Empty list check is another common operation. It may be derived from the diagram above.
One can check if a list is empty using four equivalent conditions:

1 /* list is empty */
2 if (mylist.mlh_Head->mln_Succ == NULL)
3 if (mylist.mlh_Head == (struct MinNode*)&mylist.mlh_Tail)
4 if (mylist.mlh_TailPred->mln_Pred == NULL)
5 if (mylist.mlh_TailPred == (struct MinNode*)&mylist.mlh_Head)

15

1.5.1.5 List Iterator

A list iterator is a fragment of code (usually a loop) used for traversing the list and performing
operations on its elements. The simplest, browsing iterator is usually implemented as a for
loop:

1 struct MyNode *n;
2 struct MinList *list; // let’s assume it is initialized already
3

4 for (n = (struct MyNode*)list->mlh_Head;
5 n->Node.mln_Succ;
6 n = (struct MyNode*)n->Node.mln_Succ)
7 {
8 /* do something with node ’n’ */
9 }

The first part of the for statement initializes the pointer n to the first real item of the list (the
successor of the head item). The second part is the loop end condition. Loop ends when
successor of the current element is NULL, which happens when the current element is the
list tail. Then the loop contents is not executed for the tail, as the tail is not a ”real” item, as
said above. Finally the third part of for statement moves the pointer to the next list item. A
symmetric iterator may be written for browsing a list from the end in backward direction:

1 for (n = (struct MyNode*)list->mlh_TailPred;
2 n->Node.mln_Pred;
3 n = (struct MyNode*)n->Node.mln_Pred)
4 {
5 /* do something with node ’n’ */
6 }

This time the pointer n is initialized to the last real item (predecessor of the list tail), pointer
is moved to the previous item in each loop turn. The loop finishes, when the predecessor of
the current item is NULL, which is the case for the list head. Again, the loop is not executed
for the list head itself.

The <exec/lists.h> header file provides ForEachNode() macro for building a for based it-
erator. The macro is a bit dangerous however, because it blindly typecasts the node pointer
to struct Node* and the list pointer to struct List*. It effectively bypasses the static C lan-
guage type control and can lead to bugs in code. It is much safer to cast the node pointer to
the real type of the list item, as shown in the above example iterators. Then a safer iterator
macro should take the type name as one of arguments:

1 #define ForEachNode(n, T, list) for (n = (T)(list)->mlh_TailPred;\
2 n->Node.mln_Succ; n = (T)n->Node.mln_Pred)

The macro may be used as follows:

1 ForEachNode(n, struct MyNode*, list)
2 {
3 /* do something with node ’n’ */
4 }

16

This macro is not so universal, as it assumes MinList list and also assumes that the MinNode
field placed at the start of MyNode structure is named Node. On the other hand it puts static
type control in good use. A similar macro may be defined for a backward iterator. In C++
language Exec lists iterators may be defined as templates.

1.5.1.6 Removing List Items From Inside of an Iterator

Some attention has to be put to a case when iterator is used for selective removal of items.
Someone may try to do it as follows:

1 /* BAD CODE EXAMPLE */
2 ForEachNode(n, MyNode, list)
3 {
4 if (/*some condition*/)
5 {
6 Remove((struct Node*)n);
7 FreeVec(n);
8 }
9 }

Why the code above is buggy? If the item n is being removed and its memory freed, ref-
erence to n in the next loop turn is in fact a reference to free memory. In most cases the
memory contents will stay unchanged. That is why such a bug is so popular, it may go
unnoticed if the code is not tested enough. Nothing stops the process scheduler to switch
our process out, then the memory may be allocated by another process and its contents
overwritten. Then, when control will be returned to our process, n points to undefined data
and the loop crashes. A solution of this problem is to read the successor from an item before
the item is freed. It requires a second pointer to be defined:

1 struct MyNode *n, *n2;
2

3 for (n = (struct MyNode*)list->mlh_Head;
4 n2 = (struct MyNode*)n->Node.mln_Succ;
5 n = n2)
6 {
7 if (/* some condition */)
8 {
9 Remove((struct Node*)n);

10 FreeVec(n);
11 }
12 }

Now a pointer to the successor of item n is stored in n2 before the item n is freed. At the
next loop turn, the iterator moves to the next item and checks for the list end using valid n2
pointer instead of a reference to free memory.
Things are easier when all items on the list are to be removed unconditionally, so the list is
made empty and all the items are disposed. Of course one can still use the safe loop above,
but there is a bit faster alternative:

1 while (n = (struct MyNode*)RemHead((struct List*)list)) FreeVec(n);

17

RemTail() function may be used in this loop as well, because when one removes all the
items, the order does not matter usually.

1.5.1.7 Adding and Removing Items

Adding an item in arbitrary position of a list requires only updating 4 pointers, regardless of
the item size. The diagram below explains the operation.

Figure 1.6: Inserting an item into an Exec list.

The diagam corresponds to the following code:

1 struct MyNode *n; /* insert after this item */
2 struct MyNode *a; /* insert this */
3

4 n->Node.mln_Succ->mln_Pred = &a.Node; /* 1 */
5 a->Node.mln_Succ = n->Node.mln_Succ; /* 2 */
6 a->Node.mln_Pred = &n.Node; /* 3 */
7 n->Node.mln_Succ = &a.Node; /* 4 */

Observe the order of operations. It is important. If one starts from operation 4 for example,
he would loose the only link to the rest of the list after the insert position.
Removing link is even faster, as it only requires modifying two pointers: one in the predeces-
sor of removed item and one in its successor. Let’s assume element n is to be removed:

1 n->Node.mln_Pred->mln_Succ = n->Node.mln_Succ;
2 n->Node.mln_Succ->mln_Pred = n->Node.mln_Pred;

Insert and remove operations have been standarizded in MorphOS in two ways: as exec.library
API calls and as macros. The library functions are Insert() and Remove(), their macro coun-
terparts are named INSERT() and REMOVE(). Both Insert() function and INSERT() macro
take also a pointer to list header. While it is not neccesary in general case, it allows to handle
the case when an item is inserted as the first one by passing NULL as the insert position.
Inserting as the first element can be also done by passing the list header address as the
insert position.

It should be noted, that both Remove() function and REMOVE() macro do not verify if
the removed node is really in any list. Any attempt to ”remove” a node not being in a list may
result in random memory trashing and horrible crash.

18

1.5.1.8 Head and Tail

The most common operations of inserting and removing elements are performed on both the
ends of a list. For example common data structures like stack or queue may be implemented
using list. For stack, items are added at the list head and also removed from the head. For
queue items are added at the tail and removed at the head.

Having a list head and tail pseudoitems gives an advantage, that operations at both list
ends are not different than the general case. One just replaces – on the diagram in the
previous subchapter – either the element before the insert position with the list head, or the
element after the insert position with the list tail. The only difference comes from the fact that
head and tail operations usually take just the address of the list header as their argument.
The complete set of four operations is provided:

• AddHead() function and ADDHEAD() macro add a node as the first one.

• RemHead() function and REMHEAD() macro remove the first node and return its ad-
dress.

• AddTail() function and ADDTAIL() macro add a node as the last one.

• RemTail() function and REMTAIL() macro remove the last node and return its address.

All these operations require only an address of the list header. Remove operations return
the address of removed node, or NULL if the list is empty.

1.5.1.9 Functions or Macros?

After reading all the sections above it is clear, that most of the list operations is very simple
and compiles to a few processor instructions. That is why they are also defined as macros.
What to to use then? In general macros are faster, but some of them may be a few bytes
longer than calls to library functions (especially INSERT()). On the other hand even a few
kilobytes of additional code is usually not a problem nowadays, while gain in speed is often
valuable. Then in places where speed is critical, macros are a better choice.

1.5.1.10 Enqueueing

Full list nodes have a priority field, named ln Pri. The field is often used by the system
to maintain prioritized lists or queues. To keep the list ordered by priority, a special insert
operation is required. It is provided as an exec.library call named Enqueue(). The function
takes a node (it must be full Node, not MinNode), reads its priority and finds a place for insert
comparing priorities of nodes. If there are any nodes in the list with the same priority as the
inserted one, it is inserted before already existing ones. Of course Enqueue() may be used
also for implementing custom queues. One has to take into account however that the priority
field is limited to signed 8-bit number and the function does not scale well for very long lists,
as the insert position search is linear.

19

1.5.2 Taglists

A taglist is an array of ”key-value” pairs. The key is always a 32-bit integer number and is
called a tag. The value also has a size of 32 bits. It may be an integer, or a pointer to any
structure or object. Taglists are commonly used in the MorphOS API for passing a variable
number of arguments, usually sets of attributes with their values. A few special key values
are used for array termination, concatenation and item skipping. A set of functions in the
utility.library may be used for taglist traversing, filtering, searching, copying etc.

Every pair in a taglist is a TagItem structure, defined in <utility/tagitem.h>:

1 struct TagItem
2 {
3 ULONG ti_Tag;
4 ULONG ti_Data;
5 };

To be self descriptive, every taglist, being just a plain C array, must have some kind of
termination. It is very similar to the string null-termination idea. The termination is done
with a TagItem having its ti Tag field set to TAG END (which happens to be defined as zero).
The ti Data value of the terminating TagItem is ignored, it is usually set to zero too. The
illustration below shows a simple taglist:

Figure 1.7: A simple taglist

This taglist may be created with the following code:

1 double x = 3.438872763e+17;
2 Object *obj = NewObject(/* ... */);
3

4 struct TagItem mytaglist[] = {
5 { Tag1, 2837 },
6 { Tag2, (ULONG)&x },
7 { Tag3, (ULONG)"The quick brown fox..." },
8 { Tag4, (ULONG)obj },
9 { TAG_END, 0 }

10 };

1.5.2.1 Passing Taglists to Functions

Building taglists as global or local variables is not very convenient. That is why almost every
MorphOS API function getting a taglist as one of its arguments has two forms. The first one
accepts a pointer to the taglist. The second one is a variadic args macro building the taglist
on the program stack dynamically. Such function pairs are named according to one of the
two conventions:

20

• SomeFunctionA() takes a pointer to a taglist, SomeFunction() builds the taglist dynam-
ically.

• SomeFunctionTagList() takes a pointer to a taglist, SomeFunctionTags() builds the
taglist dynamically.

Continuing the above example, one can pass the example taglist to SomeFunction() in two
ways:

1 SomeFunctionTagList(mytaglist);
2 SomeFunctionTags(Tag1, 2837, Tag2, (ULONG)&x, Tag3,
3 (ULONG)"The quick brown fox...", Tag4,
4 (ULONG)obj, TAG_END);

Of course in the second case variable mytaglist need not be defined anywhere. Note that
for every taglist-based function the taglist is the last argument. There may be some plain
arguments before it. It is a common practice to omit ti Data for the terminator (it is ignored
anyway).

1.5.2.2 Special Tags

Special tags are used to avoid copying large blocks of data when taglists are manipulated.
As taglists are plain arrays, operations like removing or inserting elements or merging taglists
involve copying their large fragments. Special tags allow for doing these operations by only
changing a few tags. Of course this comes at a price. Taglists with special tags (other
than TAG END) may be only manipulated with a set of functions from utility.library. All these
functions detect special tags and interpret them properly. It should be noted, that even if
taglists are created by hand and do not contain special tags, such tags may appear later,
when taglists are passed to system functions. It is therefore recommended to always use
utility.library tools to manipulate taglists, especially the taglist iterator named NextTagItem().

TAG END (TAG DONE)

I’ve mentioned this tag already, it works as a taglist terminator. There is no difference be-
tween TAG END and TAG DONE, both are defined as 0 and may be used alternatively. The
first name is used through this article just for being shorter.

TAG IGNORE

This special tag is used to logically remove a tag item from a taglist without copying large
blocks of data. When a tag is to be removed, it is replaced with TAG IGNORE, tags after it
need not to be moved. Any taglist processing function will ignore the tag and advance to the
next one immediately.

21

Figure 1.8: Ignored tag entry

TAG MORE

This tag is used for joining taglists. Joining of plain arrays would require counting their
size, allocating memory area and copying all tagitems. It is much simplier with TAG MORE.
If one wants to append taglist B at the end of taglist A, he replaces the terminator of taglist
A with TAG MORE and sets the data field to the address of taglist B. Then, when any taglist
manipulation function sees this special tag, it fetches the next tag from the address. In effect
taglists are logically joined into one.

Figure 1.9: Joining two taglists

TAG SKIP

This rarely used tag is used to logically remove larger fragments from a taglist. When en-
countered, it directs the taglist iterator to skip a specified number of following tags. The
number is specified in the data field of TAG SKIP. When using TAG SKIP one should take

Figure 1.10: Skipping entries of a taglist

care to not skip past the taglist terminator. Taglist processing functions are not protected
against such a bug and will try to process random data. Results are unpredictable.

22

TAG USER

While TAG USER is not really a special tag, it is listed here, because it can be found in
many source codes. It is defined as $80000000, so it divides tag space into halves. The
idea behind it is that system tags (tags being part of the system API) are located in the lower
half, while tags defined by applications are always in the upper half. In fact this is only a
convention, not enforced and not consistently followed (for example all MUI tags or even In-
tuition tags are in the user half), as non-special tags are always interpreted in some context.
Of course values of special tags must not be used, so values 0 - 3 are reserved (and treating
values up to at least 255 as reserved is very good idea too).

1.5.2.3 Traversing Taglists With NextTagItem()

NextTagItem() function from the utlilty.library is the basic taglist iterator. It should be always
used to traverse taglists, as it supports all the special tags discussed above. Every call to
the function returns an address of the next item in the taglist, of course special items are
”executed” and not returned. The argument of the function is an address of variable being a
pointer to the current tag. This pointer is initialized manually to the start of taglist and should
not be modified later. A basic loop for taglist browsing is organized as follows:

1 struct TagItem *tag, *tagptr;
2

3 // initialization to the start of taglist to be traversed
4 tagptr = my_taglist;
5

6 while (tag = NextTagItem(&tagptr))
7 {
8 /* do something with ’tag’ */
9 }

10

NextTagItem() returns NULL when it encounters TAG END terminator.

1.5.2.4 Taglists Processing

Any processing of taglists can be done with just NextTagItem() and manual manipulation of
tagitems. On the other hand utility.library provides set of functions for typical operations on
taglists. Using them saves time and avoids bugs, which may be possibly made in manually
written code. Advanced taglist processing is usually not needed in typical aplications, but
comes handy, when taglists are used for data storage.
It should be noted, that this article does not replace autodocs of utility.library functions.
These autodocs have been completely rewritten and heavily extended in the MorphOS SDK
(compared to Amiga ones). This text is just an overview of possibilities, while autodocs
provide detailed descriptions.

1.5.2.5 Finding Tags and Data

Finding particular tag in a taglist is relatively simple task. It can be done with FindTagItem()
function. It returns the first occurence of specified tag. If a tag is expected to appear multiple
times, the function may be called in a loop, taking its result as an argument for the next call.

23

1 struct TagItem *tag = my_taglist;
2

3 while (tag = FindTagItem(SOME_TAG, tag))
4 {
5 /* do something with ’tag’ */
6

7 tag++; /* start from the next tag after the one just found */
8 }

As all other functions described below, FindTagItem() automatically interprets special tags,
so they are never returned to the caller. That is why incrementing the tag pointer in the above
loop is always safe.

In many cases (like constructors of MUI classes) we are interested in data of particular
tag, and also want a default value if the tag is not present in a taglist. These two operations
may be merged into one call to GetTagData() function. It takes a tag, the default value and
a taglist as arguments. If the tag is found, its data is returned, if not the result is the default
value. Here is an example, the code:

1 if (tag = FindTagItem(SOME_TAG, taglist)) value = tag->ti_Data;
2 else value = DEF_VALUE;

reduces to

1 value = GetTagData(SOME_TAG, DEF_VALUE, taglist);

The last function related to finding is TagInArray(). It does not operate on a taglist however.
It simply checks if a tag is found in a zero-terminated array of tags. This is not a taglist, just
plain array of ULONG-s.

1.5.2.6 Creation and Copying

The simplest way of creating a tagilst is to declare it as an array, be it global or local variable.
It has been shown already in this article. If a taglist should be allocated dynamically, one can
use any general purpose memory allocation function provided by exec.library. An example
with AllocVec():

1 struct TagItem *taglist; /* taglist with 7 items (including terminator) */
2

3 taglist = (struct TagItem*)AllocVec(7 * sizeof(struct TagItem), MEMF_ANY);

The utility.library provides also a special function for taglist allocation named AllocateTagItems(),
which is in fact nothing more than a wrapper on general purpose memory allocation function.
It also clears allocated memory block, so it can be treated as an empty taglist (as TAG END
is 0). Taglist allocated with AllocateTagItems() must be freed by FreeTagItems().

24

1 struct TagItem *fresh_list;
2

3 if (fresh_list = AllocateTagItems(2))
4 {
5 /* Need not to initialize terminator at [1] */
6 /* as the taglist is cleared to all zeros. */
7 fresh_list[0].ti_Tag = SOME_TAG;
8 fresh_list[0].ti_Data = 123456;
9

10 /* more opreations on ’fresh_list’ */
11

12 FreeTagItems(fresh_list);
13 }

A copy of an existing taglist can be created with CloneTagItems(). This function is not a
simple wrapper, as taglist containing special tags cannot be copied as a memory block. For
doing a proper copy, the function traverses the taglist (using NextTagItem()) two times. First
it counts plain tags. Then it allocates a memory block for a clone and does second pass
over original, copying tags one by one. Order of tags is preserved, so when we iterate both
original and clone with NextTagItem(), we get the same results. The difference is that the
clone is stripped off of all special tags. All tags ignored and skipped are not cloned, also
separate fragments chained with TAG MORE are merged into one continuous block. The
only special tag present in the clone is, of course, TAG END. As CloneTagItems() allocates
memory for the copy, the copy must be freed later with FreeTagItems(). CloneTagItems() is
in fact a memory allocation function, so its result must be always checked against NULL.

1 struct TagItem *original, *copy;
2

3 if (copy = CloneTagItems(original))
4 {
5 /* do something with ’copy’ */
6

7 FreeTagItems(copy);
8 }

There is also a taglist copying function for making copy into a ready buffer. It is a bit mis-
leadingly named RefreshTagItemClones(). In fact the function works the same as Clone-
TagItems(), but uses a destination buffer passed as an argument instead of allocating a
new one. The copy is stripped off of ignored and skipped tags and also defragmented, the
same as for CloneTagItems(). It should be noted that RefreshTagItemClones() does not
check destination buffer size, so if the original list does not fit into the buffer, memory will be
corrupted.

1 struct TagItem copy[7];
2

3 /* I’m so sure original list has no more than 6 non-special items */
4 /* + terminator. If it is longer, total armageddon will be started. */
5

6 RefreshTagItemClones(copy, original);

The function cannot fail, so it has no result.

25

1.5.2.7 Filtering and Mapping

Utility.library provides four functions for filtering and mapping tags and data. Two of them,
FilterTagItems() and MapTagItems() operate on tags considering only their identifiers. The
second two, ApplyTagChanges() and FilterTagChanges() operate on tags also considering
their data.

1.5.2.8 Filtering Tags by Identifier

The FilterTagItems() function allows for removing tags from taglist according to specified
array of tags. Tag removal is done by changing its identifier to TAG IGNORE. This function
has two modes of operation. The array of tags may work either as array of allowed ones (all
others are filtered out), or array of ones to be rejected (all others are kept). It is illustrated on
the diagram below. Tag identifiers have been marked with colors. On the left there is original
taglist (the same in both diagrams). The center one is an array of filtered tags. It does not
contain TagItem structures, but tag identifiers, so it is just an array of ULONGs. The original
taglist after performing the operation is shown on the right.

Figure 1.11: Filtering a taglist with TAGFILTER AND mode. All tags not present in the tag
array are rejected.

Figure 1.12: Filtering a taglist with TAGFILTER NOT mode. All tags present in the tag array
are rejected.

1.5.2.9 Tag Mapping

In the process of mapping, a set of tag identifiers is being replaced by another set according
to a map. Tags not included in the map may be either kept or removed. The map is just
another taglist. Tag identifiers of map taglist are source identifiers. Data fields of map taglist

26

are destination identifiers. Mapping replaces source identifiers with destination ones. The
same as for tag filtering, tag mapping does not change data fields. Diagrams below show
the process of mapping. A set of ”red tags” is mapped to set of ”blue tags”, while other are
either left intact or removed, depending on argument passed to MapTags(). Source taglist
before mapping is shown on the left, the map in center and source after mapping on the
right. An interesting possibility is mapping ordinary tags to special ones. Special tags

Figure 1.13: Mapping red tags to blue tags with keeping unmapped ones

Figure 1.14: Mapping red tags to blue tags with removing unmapped ones

cannot be mapped, because MapTags() reads the source with NextTagItem(), so special
tags are interpreted rather than mapped. On the other hand, any ordinary tag may be
mapped to a special one. The most useful special map destination is TAG IGNORE, which
makes MapTags() to act the same as FilterTags(), but with the first function one can map
some tags and filter other ones in one go. Mapping to TAG SKIP and TAG MORE is not
that common, but may be useful in special cases (for example replacing a single tag with
taglist or switching off tag sequences). MapTags() does not allow for mapping to TAG END,
TAG IGNORE is used instead.

27

1.5.2.10 Filtering Tags Data

The ApplyTagChanges() function works on two taglists. The first one is the master, the
second is a list of changes. Every tag in master is searched for in the list of changes. If
the tag is found, the data of the tag in master list is set to the data in change list. The
FilterTagChanges() is more advanced version of the previous function. Applying changes
to the master is optional in this case (controlled by a function argument). Additionally the
change list is modified. Tags specifying no change, it means found in both the master and
the change list and having the same data, are removed from the change list.
The diagram below illustrates principle of working of ApplyTagChanges(). Tags marked
green are not subject of changes, and are left intact. Tags in red are possible subject of
changes. Data, which are different in the master list and change list are marked blue.

Figure 1.15: Principles of ApplyTagChanges()

Similar diagram explains FilterTagChanges(). It is a bit more complicated, as the function
has additional parameter. This boolean parameter controls applying changes to the master
taglist. Then one can only learn about changes without applying them.

Figure 1.16: Principles of FilterTagChanges()

28

1.5.2.11 Data Conversion

Data conversion functions automate data exchange between taglists and C-style structures
and bitfields. Bitfields are easier, so let’s start with them.

1.5.2.12 Bitfields

A bitfield is very effective way of storing boolean (TRUE or FALSE) information. One boolean
TagItem occupies 64 bits in memory, while it may be stored in one bit in a bitfield. Also check-
ing a bit value is much faster than checking tag value. The PackBoolTags() function converts
a taglist into bitfield. Parameters of this function are a bit similar to MapTags(). There is a
source taglist and a map taglist. The map however contains bitmasks for the bitfield instead
of tag identifiers. Boolean taglist processing starts from setting the initial bitfield value (taken
from the first argument of the function). Then every tag in the map is searched in the source
taglist. If found, its boolean value is read and controls how corresponding bitmask is applied
to the bitfield. For TRUE, all 1-s from the mask are set in the bitfield. For FALSE all 1-s from
the mask are cleared in the bitfield.

Figure 1.17: Example of a bitfield

In the usual case, the mask of every tag has only one bit set, so tags are just mapped to
single bits of the bitfield. It is possible to use multi-bit masks for tags, even overlapping ones.
It should be noted however, that overlapped masks make the final result dependent on order
of tags in the source taglist.
One may be surprised that utility.library does not provide an inverse function to PackBoolT-
ags(). There are a few reasons for this:

• For the general case of multi-bit and possibly overlapping masks, the inverse function
is not possible.

• For the strict case of single bit, not overlapping masks, the inverse is easy to write.

• To some extent, the task of unpacking may be performed with UnpackStructureTags().

1.5.2.13 Structures

A pair of two functions: PackStructureTags() and UnpackStructureTags() can be used to con-
vert a taglist to almost arbitrarily defined data structure and vice versa. Because they were

29

poorly documented in AmigaOS 3.x autodocs, they were rarely used in the past. MorphOS
SDK contains a rewritten from scratch documentation of these functions, based on gathered
knowledge and extensive tests of MorphOS and AmigaOS 3.x implementations (which are
fully compatible).

The PackStructureTags() function moves data stored in a taglist to a data structure. The
process is controlled by pack table. The table contains encoded storing instructions, like
offsets and sizes of structure fields as well as source tag identifiers. Supported field widths
are single bits as well as 8-, 16- and 32-bit fields, signed or unsigned. The pack table is best
constructed using a set of construction macros defined in ¡utility/pack.h¿. These macros au-
tomatically generate pack instructions, field offsets etc. taking into account things like field
padding inserted by the compiler. If for some reason macros cannot be used, pack table
entry layout is described in the autodoc for PackStructureTags().

Tag identifiers for data to be packed are assumed to start from a defined value called tag
base. Tag base definition should be the first entry of the pack table and is generated with
PACK STARTTABLE macro. It is also assumed, that offsets between the base and all the
tags are no bigger than 1024. Then only offsets are stored in the pack table (using 10
bits out of 32 available), so packing instruction for one tag fits in a single ULONG. If, for
some reason, data tags are not in a single offset range, the tag base may be changed with
PACK NEWOFFSET macro. Finally PACK ENDTABLE macro ends the packing table.

Structure entries, except of single bits, are defined with PACK ENTRY macro, taking 5 argu-
ments. The first one is the tag base, the second is the identifier of the tag containing data
for the field. Tag offset is calculated automatically from them, saving the need of manual
bit masking. The next two arguments describe the field, they are structure C type name
and field name. Offset of the field is then determined automatically. This takes into ac-
count implicit field padding and also works properly for structures declared with attribute
((packed)), commonly used for data loaded from files (like headers or records). The last, fifth
argument contains control flags, defining field size.

1 struct Foo
2 {
3 ULONG Bar;
4 WORD Blah;
5 BYTE Xyz;
6 };
7

8 #define FOO_TAGBASE TAG_USER
9 #define FOO_BAR (FOO_TAGBASE + 0)

10 #define FOO_BLAH (FOO_TAGBASE + 1)
11 #define FOO_XYZ (FOO_TAGBASE + 2)
12

13 ULONG PackTable[] = {
14 PACK_STARTTABLE(FOO_TAGBASE),
15 PACK_ENTRY
16 (FOO_TAGBASE, FOO_BAR, Foo, Bar, PKCTRL_ULONG | PKCTRL_PACKUNPACK),
17 PACK_ENTRY
18 (FOO_TAGBASE, FOO_BLAH, Foo, Blah, PKCTRL_WORD | PKCTRL_PACKUNPACK),
19 PACK_ENTRY
20 (FOO_TAGBASE, FOO_XYZ, Foo, Xyz, PKCTRL_BYTE | PKCTRL_PACKUNPACK),
21 PACK_ENDTABLE
22 }

30

The example above defines some simple structure, a set of tags and a pack table for data
exchange between a taglist and the structure. The same table may be used in both direc-
tions, as it has been declared as fully symetric (PKCTRL PACKUNPACK). It is possible to
use some tags only while packing taglist to structure (PKCTRL PACK) or only while unpack-
ing back to taglist (PKCTRL UNPACK). Desired default values may be stored in the structure
before unpacking. If a tag assigned to some field is not found in the source taglist, the field
is not changed. If the same table is used for packing and unpacking, it is important to take
care of signedness of fields. It does not matter for packing, as ti Data field is just truncated
by discarding higher bytes when stored in 8- or 16-bit field. When unpacking however, fields
marked as signed will be properly sign-extended, while unsigned ones will be extended with
zeros.

Single bits of fields may be packed and unpacked too. Unlike PackBoolTags(), PackStruc-
tureTags() does not allow for multi-bit masks, because pack instruction stores just bit number.
On the other hand structure function supports also 8- and 16-bit fields. It is also more flex-
ible in bit handling. Bit may be set according to the value of a boolean tag (with optional
negation), it may be also set or cleared based just on the tag presence (tag data is ignored
in this case). It is controlled by PACK BIT / PACK FLIPBIT and PSTF EXISTS flags:

• PACK BIT – sets bit according to tag data,

• PACK FLIPBIT – sets bit according to negation of tag data,

• PACK BIT — PSTF EXISTS – sets bit if tag is present in the taglist,

• PACK FLIPBIT — PSTF EXISTS – clears bit if tag is present in the taglist.

Bits are defined using PACK BYTEBIT, PACK WORDBIT and PACK LONGBIT macros de-
pending on the width of bitfield. Here is a simple example:

1 struct FooBits
2 {
3 ULONG LongField; // bitfields should be always
4 UBYTE ShortField; // declared as unsigned
5 };
6

7 #define FOOBITS_TAGBASE TAG_USER
8 #define FOO_LongA (FOOBITS_TAGBASE + 0)
9 #define FOO_LongB (FOOBITS_TAGBASE + 1)

10 #define FOO_ShortC (FOOBITS_TAGBASE + 2)
11 #define FOO_ShortD (FOOBITS_TAGBASE + 3)
12

13 ULONG PackTable[] =
14 {
15 PACK_STARTTABLE(FOOBITS_TAGBASE),
16 PACK_LONGBIT(FOOBITS_BASE, FOO_LongA, FooBits, LongField,
17 PKCTRL_PACKUNPACK | PKCTRL_BIT, 23),
18 PACK_LONGBIT(FOOBITS_BASE, FOO_LongB, FooBits, LongField,
19 PKCTRL_PACKUNPACK | PKCTRL_FLIPBIT, 19),
20 PACK_BYTEBIT(FOOBITS_BASE, FOO_ShortC, FooBits, ShortField,
21 PKCTRL_PACKUNPACK | PKCTRL_BIT | PSTF_EXISTS, 6),
22 PACK_BYTEBIT(FOOBITS_BASE, FOO_ShortD, FooBits, ShortField,
23 PKCTRL_PACKUNPACK | PKCTRL_FLIPBIT | PSTF_EXISTS, 2),
24 PACK_ENDTABLE
25 };

31

The code above assigns tags to bits as follows (note that bit 0 is always the least significant
one):

• FOO LongA is assigned to bit 23 of LongField, tag data is stored in bit,

• FOO LongB is assigned to bit 19 of LongField, tag data is negated and then stored in
bit,

• FOO ShortC is assigned to bit 6 of ShortField, bit is set if tag is found,

• FOO ShortD is assigned to bit 2 of ShortField, bit is cleared if tag is found.

Not all of these possibilities are symmetrically available while unpacking to a taglist. Unpack-
StructureTags() ignores PSTF EXISTS and PKCTRL FLIPBIT and simply sets tag data field
to FALSE or TRUE depending on the bit.

32

Chapter 2

Magic User Interface Programming

Author: Grzegorz Kraszewski
Source: http://library.morphzone.org/Magic User Interface Programming

2.1 Introduction

Magic User Interface (MUI for short) is the MorphOS toolkit for creating applications with a
graphical user interface. It provides a broad set of gadgets (controls) as well as a complete
framework for designing event driven programs. MUI is object oriented, but does not rely on
any specific programming language. A BOOPSI (Basic Object Oriented System for Intuition)
is used as the foundation of MUI object oriented design.
MUI offers a dynamic layout as its basic mode of operation. The placement of gadgets is
determined by grouping them in horizontal, vertical or matrix groups. Pixel coordinates of
gadgets adapt dynamically to user preferences like font sizes, spacing between gadgets,
objects’ frames and backgrounds. The two screenshots below show the same example
application. The only difference is that user MUI settings are different. The first settings are

Figure 2.1: MUI application example screenshot

plain and clean. They may even be called a bit oldschool for using simple, vector frames and
uniform color backgrounds. A simple window skin, named Mahalaxmi fits this design nicely.

33

http://library.morphzone.org/Magic_User_Interface_Programming

Figure 2.2: MUI application example screenshot

The second example uses some MUI 4 features, like bitmap frames with transparency
masks. This dark design is achieved by using the Nox window skin. All gadget position
calculations are done automatically, accounting for a larger font and fancy frames. The pro-
grammer need not care about user taste and preferences (a good programmer would test
the program appearance with a few different settings however).

2.2 The First Steps

2.2.1 Short BOOPSI Overview

2.2.1.1 Object Oriented Programming

Object oriented programming is a technique developed as a response to two trends in the
computer market. The first one was increasing complexity of software. Management of a
traditionally written codebase becomes harder when the code size increases. The second
trend was the increasing popularity of graphical user interfaces, which meant the end of se-
quential execution of programs. Instead modern programs are event driven, which means
the flow of code execution is determined by external events (like user input) and is not known
at the time of writing the program. Object oriented programming divides a program into a set
of objects interacting with each other using well defined interfaces. Such a modularization
simplifies the management of a software project and also fits naturally with the concept of
modern graphical user interfaces. User controls (called ”gadgets” in MUI) are just objects in
the code and they interact with other objects representing user data.
This short introduction is not intended to be a complete lecture on object oriented program-
ming. On the other hand no knowledge of any particular object oriented programming lan-
guage is required to get familiar with BOOPSI. Usually the support for OOP techniques
comes with a programming language, which is either designed for OOP (like C++, C# or
Java) or has OOP support added in a more or less logical way (Objective C, PHP). This
is not the case for BOOPSI and MUI however. In this case object oriented programming
support comes from the operating system. BOOPSI and MUI can be used with any pro-
gramming language, including traditional ones, for example C and even assembler.
The BOOPSI module is located in the intuition.library, with some important functions being
added from a statically linked libabox. Its primary design goal was to build a framework for

34

wrapping Intuition GUI elements in an object oriented interface. This approach was unfortu-
nately not flexible enough, so MUI uses only the basic BOOPSI framework. This framework
provides the four basic concepts of object oriented programming: classes, objects, methods
and attributes. It also supports class inheritance. Because of its simplicity, BOOPSI is easy
to understand and use, especially when compared to more sophisticated frameworks, like
the one in the C++ programming language.

2.2.1.2 Classes

A class is the basic term of object oriented programming. It is the complete description of its
objects, their attributes and methods. In the BOOPSI framework, a class consists of:

• An IClass structure. A pointer to this structure is used as a reference to the class. The
IClass structure is defined in the <intuition/classes.h> system header file. There is
also the Class type, which is the same as struct IClass.

• A class dispatcher function. When an application calls a method on an object, the
object’s class dispatcher is called. The dispatcher checks the method’s identifier and
jumps to this method code. The dispatcher is usually implemented as a big switch
statement. For simple classes, which implement only a few short methods, code of
these methods is often placed inside case statements. Bigger classes have methods’
code separated into functions placed outside of the dispatcher. As every method goes
through a dispatcher, all BOOPSI methods are virtual in the C++ meaning. For this
reason, calling a method in BOOPSI is usually slower than in C++.

A class defines a set of methods available for its objects (instances) by the set of case
statements in the dispatcher. Objects attributes are set using the OM SET() method and
are gotten using OM GET(). The attributes may also be passed to the object constructor
directly. The set of attributes for a class and applicability of the attributes are then defined by
the source code of OM NEW() (the constructor), OM SET() and OM GET() methods. There
is no formal declaration of class. There is also no division between public and private meth-
ods and attributes. Some kind of formal declaration and levels of access may be imposed by
putting every class in a separate source code file. An accompanying header file would con-
tain definitions of method identifiers, attribute identifiers and method parameters structures,
but only those considered ”public”. Private method identifiers should be defined inside the
source code of the class, so they are not visible outside of the class source code.
A BOOPSI class can be shared between applications. All the MUI built-in classes are shared
ones. The BOOPSI maintains a system-wide list of public classes (the list can be browsed
with the Scout monitoring tool). Shared classes are identified by names. A part of the MUI
standard classes is contained inside the main MUI library – muimaster.library. The library
adds these classes to the system list when opened for the first time. The rest of the MUI
standard classes are stored on the system disk partition in the MOSSYS:Classes/MUI/ di-
rectory. Additional third party classes may be placed in the SYS:Classes/MUI/ directory.
Shared classes use the MorphOS shared library framework, in other words a shared BOOPSI
class is just a kind of shared library. The class adds itself to the public list of classes, when it
is opened from disk. As such, a BOOPSI shared class should be opened with OpenLibrary()
before use (see details), especially as BOOPSI classes are usually not included into the list
of libraries opened automatically. This is not the case for MUI classes however. MUI shared
classes can be used without opening them. It is explained below, in the MUI Extensions to
BOOPSI section.

35

2.2.1.3 Methods

Methods are just actions, which can be performed on an object. A set of available methods
is defined by the object’s class. Technically speaking, a method is a function called with an
object as its parameter in order to change the object’s state. In BOOPSI, methods are called
using the DoMethod() call from libabox:

1 result = DoMethod(object, method_id, ... /* method parameters */);
2 result = DoMethodA(object, method_struct);

The first, more popular form of the call just builds the method structure on the fly, from
arguments passed to it. Any method structure always has the method identifier as the first
field. The DoMethodA() call gets a pointer to the method structure, the structure is built by
the application. The second form is rarely used. The number and meaning of parameters,
as well as the meaning of the result are method specific. Comparison of executing a method
with both forms of the call is given below:

1 struct MUIP_SomeMethod
2 {
3 ULONG MethodID;
4 LONG ParameterA;
5 LONG ParameterB;
6 };
7

8 DoMethod(object, MUIM_SomeMethod, 3, 7);
9

10 struct MUIP_SomeMethod mparams = { MUIM_SomeMethod, 3, 7 };
11 DoMethodA(object, &mparams);

The DoMethod() form is more convenient, so it is commonly used. MUI uses specific prefixes
for all its structures and constants:

• MUIM for method identifiers.

• MUIP for method parameter structures.

• MUIA for attribute identifiers.

• MUIV for special, predefined attribute values.

The C types used in the method structure above may need some explanation. LONG is a 32-
bit signed integer, ULONG is an unsigned one. Because the structure is usually built on the
processor stack, all parameters are extended and aligned to 32 bits. Then every parameter
in the structure must be defined either as a 32-bit integer or a pointer. Any parameter larger
than 32 bits must be passed via pointer (for example double precision floats or strings).

36

2.2.1.4 Setting an attribute

An object’s attributes represent its properties. They are written and read using special meth-
ods, OM SET() and OM GET() respectively. This differs from most object oriented program-
ming languages, where attributes (being implemented as an object’s fields) are accessed
directly. Manipulating attributes in BOOPSI is slower then, as it implies performing a method.
The OM SET() method does not take a single attribute and its value, but a taglist of them,
so one can set multiple attributes at once. The setting of two attributes to an object may be
done as follows:

1 struct TagItem attributes[] = {
2 { MUIA_SomeAttr1, 756 },
3 { MUIA_SomeAttr2, 926 },
4 { TAG_END, 0 }
5 };
6

7 DoMethod(object, OM_SET, (ULONG)attributes);

However, this is cumbersome and the code is not easily readable. The intuition.library makes
it easier by providing the SetAttrsA() function, which is a wrapper for the OM SET() method.
Using this function and the array defined above, one can write:

1 SetAttrsA(object, attributes);

It still requires definition of a temporary taglist, but the function also has a variadic (meaning
it can take a variable number of arguments) form SetAttrs(), which allows for building the
taglist on-the-fly:

1 SetAttrs(object,
2 MUIA_SomeAttr1, 756,
3 MUIA_SomeAttr2, 926,
4 TAG_END);

This is not all however. Programmers are lazy and decided that in the common case of
setting a single attribute, SetAttrs() is still too much typing. A common practice found in
sources using MUI was to define an xset() or set() macro, which is now defined in the system
headers, in the <libraries/mui.h> file.

1 #define set(object, attribute, value)\
2 SetAttrs(object, attribute, value, TAG_END)

Then, setting a single attribute can be coded as follows:

1 set(object, MUIA_SomeAttr1, 756);

The OM SET() method returns the number of attributes applied to the object. If some at-
tributes are not known to the object’s class (and superclasses), they are not counted. This
return value is usually ignored, it may be used for testing an attribute applicability.
MUI provides a few additional methods for setting attributes, namely MUIM Set(), MUIM NoNotifySet()
and MUIM MultiSet(). They are mainly used in notifications.

37

2.2.1.5 Getting an attribute

The OM GET() method gets a single attribute from an object. There is no multiple attributes
getting method. Its first, obvious parameter is the attribute identifier. The attribute value is
not returned as the result of the method however. Instead the second parameter is a pointer
to a memory area, where the value is to be stored. This allows for passing attributes larger
than 32 bits, they are just copied to the pointed memory area. This only works for fixed
size attributes. Text strings cannot be passed this way, so they are passed as pointers (a
pointer to the string is stored at a place in memory pointed to by the second parameter of
OM GET()). The three examples below demonstrate all three cases:

1 ONG value1;
2 QUAD value2; /* 64-bit signed integer */
3 STRPTR *value3;
4 /* integer attr */
5 DoMethod(object, OM_GET, MUIA_Attribute1, (ULONG)&value1);
6 /* fixed size big attr */
7 DoMethod(object, OM_GET, MUIA_Attribute2, (ULONG)&value2);
8 /* string attr */
9 DoMethod(object, OM_GET, MUIA_Attribute3, (ULONG)&value3);

In cases when an attribute is returned by pointer, the data pointed to should be treated as
read-only unless documented otherwise.
Similarly as for OM SET(), there is a wrapper function for OM GET() in the intuition.library,
named GetAttr(). This function unexpectedly changes the order of arguments: attribute
identifier is the first, object pointer is the second. The three examples above may be written
with GetAttr() as follows:

1 GetAttr(MUIA_Attribute1, object, &value1);
2 GetAttr(MUIA_Attribute2, object, (ULONG*)&value2);
3 GetAttr(MUIA_Attribute3, object, (ULONG*)&value3);

The third parameter, a storage pointer is prototyped as pointer to ULONG, so in the first
example type casting is not needed.
The <libraries/mui.h> system header file defines a macro get(), which reverses the order
of the two first arguments of GetAttr() and adds the typecasting to ULONG*. The order of
arguments of get() is the same as for set(), which helps to avoid mistakes. The third line of
the above example may be rewritten with get() this way:

1 get(object, MUIA_Attribute3, &value3);

The most often used attributes are integers (32-bit or shorter) and strings. Both of them fit
into a 32-bit variable, as strings have to be passed via pointers. Taking this into account,
MUI programmers invented a function (sometimes defined as a macro), which just returns
the attribute value instead of storing it at a specified address. The function is named xget()
and works as shown below:

38

1 value1 = xget(object, MUIA_Attribute1);
2 /* MUIA_Attribute2 can’t be retrieved with xget() */
3 value3 = (STRPTR)xget(object, MUIA_Attribute3);

The xget() function may be defined in the following way:

1 inline ULONG xget(Object *obj, ULONG attribute)
2 {
3 ULONG value;
4

5 GetAttr(attribute, object, &value);
6 return value;
7 }

The function is very simple and is compiled to a few processor instructions. That is why it is
declared as inline, which causes the compiler to insert the function’s code in-place instead
of generating a jump. This makes the code faster, albeit a bit bigger. Except for working
only with 32-bit attributes, xget() also has the disadvantage of loosing the OM GET() return
value. The value is boolean and is TRUE if the object’s class (or any of its superclasses)
recognizes the attribute, FALSE otherwise. This value is usually ignored, but may be useful
for scanning objects for supported attributes.

The xget() function is not defined in the system headers. It has been described here be-
cause of its common use in MUI applications. Its counterparts for bigger sized arguments
may be defined if needed.

2.2.1.6 Object construction

Having a class, the programmer can create an unlimited number of objects (instances) of
this class. Every object has its own instance data area, which is allocated and cleared au-
tomatically by the BOOPSI. Of course only object data are allocated for each instance. The
code is not duplicated, so it must be reentrant (static variables and code self-modification
must not be used).

Objects are created and disposed with two special methods: the constructor, OM NEW()
and the destructor, OM DISPOSE(). Of course the constructor method cannot be called
on an object, because it creates a new one. It needs a pointer to the object’s class in-
stead, so it cannot be invoked with DoMethod(). The intuition.library provides NewObjectA()
and NewObject() functions for calling the constructor. The difference between them is that
NewObjectA() takes a pointer to a taglist specifying initial values for objects. NewObject()
allows the programmer to build this taglist from a variable number of function arguments.

NewObject[A]() has two alternative ways of specifying the created object’s class. Private
classes are specified by pointers of Class type. Shared classes are specified by name,
which is a null-terminated string. If the pointer is used for class specification, the name
should be NULL, if a name is used, the pointer should be NULL. Four examples below show
creating instances of private and public class with both NewObjectA() and NewObject():

39

1 Object *obj;
2 Class *private;
3

4 struct TagItem initial = {
5 { MUIA_Attribute1, 4 },
6 { MUIA_Attribute2, 46 },
7 { TAG_END, 0 }
8 };

A private class, NewObjectA():

1 obj = NewObjectA(private, NULL, initial);

A private class, NewObject():

1 obj = NewObject(private, NULL,
2 MUIA_Attribute1, 4,
3 MUIA_Attribute2, 46,
4 TAG_END);

A public class, NewObjectA():

1 obj = NewObjectA(NULL, "some.class", initial);

A public class, NewObject():

1 obj = NewObject(NULL, "some.class",
2 MUIA_Attribute1, 4,
3 MUIA_Attribute2, 46,
4 TAG_END);

NewObject[A]() returns NULL in case of an object creation failure. Usual reasons are: wrong
class pointer/name, lack of free memory, wrong/missing initial values of attributes. The return
value of NewObject[A]() should always be checked in the code.

2.2.1.7 Object destruction

The OM DISPOSE() method is used to destroy an object. Unlike OM NEW() the destructor
may be invoked with DoMethod():

1 DoMethod(object, OM_DISPOSE);

The intuition.library has a wrapper for this however, named DisposeObject():

1 DisposeObject(object);

40

2.2.1.8 MUI Extensions to BOOPSI

The Magic User Interface not only builds on BOOPSI but also extends it. Other than pro-
viding a broad set of classes, MUI also modifies the BOOPSI mode of operation a bit. Two
modifications are discussed in this chapter: extension of the IClass structure and MUI’s own
functions for object construction and destruction.

MUI uses the MUI CustomClass structure for its internal class representation. This struc-
ture contains the standard Class structure inside. It is important when creating objects from
MUI private classes with NewObject(), that the Class structure must be extracted from the
MUI CustomClass structure:

1 struct MUI_CustomClass *priv_class;
2 Object *obj;
3

4 obj = NewObject(priv_class->mcc_Class, NULL, /* ... */ TAG_END);

MUI’s second modification of BOOPSI is using its own functions for object construction and
destruction, MUI NewObject[A]() and MUI DisposeObject() respectively. These two func-
tions are used only for objects of MUI shared (public) classes. Objects of private classes
are created with NewObject() as shown above. The main advantage of MUI NewObject() is
automatic opening and closing of disk based shared classes. Here is an example:

1 Object *text;
2

3 text = MUI_NewObject(MUIC_Text, MUIA_Text_Contents, "foobar", TAG_END);

MUIC Text is a macro defined in <libraries/mui.h> and it expands to ”Text.mui” string. All
MUI public classes should be referenced by their MUIC macros rather than by direct string
literals. It helps to detect mistyped class names, as a typo in a macro will be detected during
compilation. The MUI checks if a class named Text.mui has been added to the public list
of classes. If not, the class is found on disk, opened and used for creating the requested
object. Closing the class when no longer in use is handled automatically too. All MUI objects
should be disposed using MUI DisposeObject(), which takes the object to be disposed as
its only argument, the same as DisposeObject().

1 MUI_DisposeObject(text);

2.2.2 Event Driven Programming, Notifications

2.2.2.1 Event Driven Programming

Event driven programming is the natural consequence of the invention and development of
graphical user interfaces. Most traditional, command line programs work like a pipe: data
are loaded, processed and saved. There is no, or limited user interaction (like adjusting

41

processing parameters, or choosing an alternative path). A GUI changes all that. A GUI
based program initializes itself, opens a window with some icons and gadgets, then waits
for user actions. Fragments of the program are executed in response to user input, after an
action is finished, the program goes back to waiting. This way the program flow is determined
not by the code, but rather by input events sent to the program by the user via the operating
system. This is the basic paradigm of event driven programming.

Figure 2.3: Execution flow of an event driven program

2.2.2.2 Notifications in MUI

There are two approaches to input event decoding in an event driven program: centralized
and decentralized. Centralized decoding is programmed as a big conditional statement (a
switch statement usually, or a long cascade of if statements) inside the main loop of the
fig. 1. flowchart. Depending on the decoded event, subroutines performing requested ac-
tions are called. Decentralized input event decoding is a more modern idea. In this case,
the GUI toolkit receives and handles incoming input events internally and maps them to at-
tribute changes of GUI objects (for example, clicking with the mouse on a button changes
its attribute to ”pressed”). Then an application programmer can assign actions to attribute
changes of chosen objects. This is done by creating notifications on objects.

MUI uses decentralized input event decoding. All input events are mapped to attribute
changes of different objects. These are visible GUI gadgets (controls) usually, but some
events may be mapped to attributes of a window object, or an application object (the last
one has no visible representation). After creating the complete object tree, but before enter-
ing the main loop, the program sets up notifications, assigning actions to attribute changes.
Notifications can also be created and deleted dynamically at any time.

A notification connects two objects together. The source object triggers the action after
one of its attributes changes. The assigned action (method) is then performed on the target

42

object. The notification is set up by calling the MUIM Notify() method on the source ob-
ject. Arguments of the method can be divided into the source part and the target part. The
general form of the MUIM Notify() call is shown below:

1 DoMethod(source,
2 MUIM_Notify,
3 attribute,
4 value,
5 target,
6 param_count,
7 action,
8 /* parameters */);

The first four arguments form the source part, the rest is the target part. The complete call
can be ”translated” to a human language in the following way:

When the source object changes its attribute to the value,
perform action method on the target object with parameters.

There is one argument not explained with the above sentence, namely param count. This is
just the number of parameters following this argument. The minimum number of parameters
is 1 (the action method identifier), there is no upper limit other than using common sense.

A notification is triggered when an attribute is set to a specified value. It is often useful
to have a notification on any attribute change. A special value MUIV EveryTime should be
used as a triggering value in this case.

The target action of a notification can be any method. There are a few methods designed
specifically to be used in notifications:

MUIM Set() is another method for setting an attribute. It is used when a notification has
to set an attribute on the target object. OM SET() is not suitable for using in notifications
because it takes a taglist containing attributes to be set. This taglist cannot be built from
arguments and must be defined separately. MUIM Set() sets a single attribute to a specified
value. They are passed to the method directly as two separate arguments. The example
below opens a window when a button is pressed:

1 DoMethod(button,
2 MUIM_Notify,
3 MUIA_Pressed,
4 FALSE,
5 window,
6 3,
7 MUIM_Set,
8 MUIA_Window_Open,
9 TRUE);

Those not familiar with MUI may ask why the triggering value is set as FALSE. It is related
to the default behaviour of button gadgets. The gadget triggers when the left mouse button
is released, so at the end of a click. The MUIA Pressed attribute is set to TRUE when the

43

mouse button is pushed down, and set to FALSE when the mouse button is released. Now it
should be obvious why the notification is set to trigger at a MUIA Pressed change to FALSE.

MUIM NoNotifySet() works the same as MUIM Set() with one important exception. It does
not trigger any notifications set on the target object when the attribute has changed. It is
often used to avoid notification loops, not only in notification, but also standalone in the code.

MUIM MultiSet() allows for setting the same attribute to the same value for multiple objects.
Objects are specified as this method’s arguments and the final argument should be NULL.
Here is an example, disabling three buttons after a checkmark is deselected:

1 DoMethod(checkmark,
2 MUIM_Notify,
3 MUIA_Selected,
4 FALSE,
5 application,
6 7,
7 MUIM_MultiSet,
8 MUIA_Disabled,
9 TRUE,

10 button1,
11 button2,
12 button3,
13 NULL);

What is interesting is that while the target notification object is completely irrelevant here, it
must still be a valid object pointer. The application object is usually used for this purpose, or
the notification source object.

MUIM CallHook() calls an external callback function called a hook. It is often abused by pro-
grammers being reluctant to perform subclassing of standard classes, instead implementing
program functionality as new methods. Calling a method from a notification is usually faster
and easier (however, a hook needs some additional structures to be defined).

MUIM Application ReturnID() returns a 32-bit integer number to the main loop of a MUI
program. With this method MUI’s decentralized handling of input events can be turned into
a centralized one. MUI programming beginners tend to abuse this method and redirect all
the event handling back to the main loop, putting a big switch statement there. While rather
simple, this programming technique should be avoided in favour of implementing program
functionality in methods. Adding code inside the main loop degrades the GUI responsive-
ness. The only legitimate use of MUIM Application ReturnID() is to return a special value
MUIV Application ReturnID Quit used for ending the program.

2.2.2.3 Reusing Triggering Value

When the action of a notification is to set an attribute in the target object, it is often desired
to forward the triggering value to the target object. It is very easy, when the notification is
set to occur on a particular value. Things change however, when the notification is set to
occur on any value with MUIV EveryTime. A special value MUIV TriggerValue may be used
for this. It is replaced with the actual value of the triggering attribute at every trigger. Another

44

special value, MUIV NotTriggerValue is used for boolean attributes and is replaced by a log-
ical negation of the current value of the triggering attribute.

The first example uses MUIV Trigger Value, to display the value of a slider in a string gadget:

1 DoMethod(slider,
2 MUIM_Notify,
3 MUIA_Numeric_Value,
4 MUIV_EveryTime,
5 string,
6 3,
7 MUIM_Set,
8 MUIA_String_Integer,
9 MUIV_TriggerValue);

The second example connects a checkmark with a button. When the checkmark is selected,
the button is enabled. Deselecting the checkmark disables the button:

1 DoMethod(checkmark,
2 MUIM_Notify,
3 MUIA_Selected,
4 MUIV_EveryTime,
5 button, 3,
6 MUIM_Set,
7 MUIA_Disabled,
8 MUIV_NotTriggerValue);

MUIV EveryTime, MUIV TriggerValue and MUIV NotTriggerValue are defined as particular
values in the 32-bit range. Because of this, it is impossible to set a notification on the value
1 233 727 793 (which is MUIV EveryTime). It is also impossible to set the value to a fixed
number 1 233 727 793 (MUIV TriggerValue) or 1 233 727 795 (MUIV NotTriggerValue) using
MUIM Set() in a notification.

2.2.2.4 Notification loops

There may be hundreds of notifications defined in a complex program. Changing an attribute
may trigger a notification cascade. It is possible that the cascade contains loops. The
simplest example of a notification loop is a pair of objects having notifications on each other.
Let’s assume there are two sliders which should be coupled together. It means moving one
slider should move the other one as well. A set of two notifications can ensure this behaviour.

1 DoMethod(slider1,
2 MUIM_Notify,
3 MUIA_Numeric_Value,
4 MUIV_EveryTime,
5 slider2,
6 3,
7 MUIM_Set,
8 MUIA_Numeric_Value,

45

9 MUIV_Trigger_Value);
10 DoMethod(slider2,
11 MUIM_Notify,
12 MUIA_Numeric_Value,
13 MUIV_EveryTime,
14 slider1,
15 3,
16 MUIM_Set,
17 MUIA_Numeric_Value,
18 MUIV_Trigger_Value);

When the user moves slider1 to value 13, the first notification triggers and sets slider2 value
to 13. This triggers the second notification. Its action is to set slider1 value to 13, which in
turn triggers the first notification again. Then the loop triggers itself endlessly... Or rather it
would, if MUI had no anti-looping measures. The solution is very simple: if an attribute is set
for an object to the same value as the current one, any notifications on this attribute in this
object are ignored. In our example the loop will be broken after the second notification sets
the value of slider1.

2.2.2.5 The ideal MUI main loop

The ideal main loop of a MUI program should contain almost no code inside. All actions
should be handled with notifications. Here is the code of the loop:

1 ULONG signals = 0;
2

3 while (DoMethod(application,
4 MUIM_Application_NewInput,
5 (ULONG)&signals)
6 != (ULONG)MUIV_Application_ReturnID_Quit)
7 {
8 signals = Wait(signals | SIGBREAKF_CTRL_C);
9 if (signals & SIGBREAKF_CTRL_C) break;

10 }

The variable signals contains a bit-mask of input event signals sent to the process by the op-
erating system. Its initial value 0 just means ”no signals”. When the MUIM Application NewInput()
method is performed on the application object, MUI sets signal bits for input events it expects
in the signals variable. These signals are usually signals of application windows’ message
ports, where Intuition sends input events. Then the application calls the exec.library function
Wait(). Inside this function, the execution of the process is stopped. The process scheduler
will not give any processor time to the process until one of the signals in the mask arrives.
Other than input event signals set by MUI, only the system CTRL-C signal is added to the
mask. Every well written MorphOS application should be breakable by sending this sig-
nal. It can be sent via the console by pressing the CTRL + C keys, or from tools like the
TaskManager. When one of the signals in the mask arrives at the process, the program re-
turns from Wait(). If the CTRL-C signal is detected, the main loop ends. If not, MUI decodes
the received input events based on its received signal mask, translates events to changes
of attributes of relevant objects and performs the triggered notifications. All this happens
inside the MUIM Application NewInput() method. Finally the signal mask is updated. If any

46

notification calls the MUIM Application ReturnID() method, he identifier passed is returned
as the result of MUIM Application NewInput(). In the event of receiving the special value
MUIV Application ReturnID Quit the loop ends.

Any additional code inserted into the loop will introduce delay in GUI handling and redraw-
ing. If a program does some processor intensive calculations, the best way to deal with them
is to delegate them into a subprocess. Loading the main process with computational tasks
may result in the program being perceived as slow and unresponsive to user actions.

2.2.3 ”Hello World!” in MUI

This is the window of the example MUI application. It is very simple, it contains only one
static text object and no gadgets, except for window border gadgets. Note that the number
of gadgets on the right side of the window depends on user MUI settings. The source code
of the application is very simple too and fits into 60 lines, including proper vertical spacing.
It is cut in pieces in the article for better reading. A complete, ready to compile version is
available too.

Figure 2.4: Screenshot of HelloWorld in MUI

1 #include <proto/muimaster.h>
2 #include <proto/intuition.h>

Header files for muimaster.library and intuition.library are included. Note that these libraries
will be opened and closed automatically.

1 Object *App, *Win;

Global pointers for the application object and the window object. While using many global
variables is considered inelegant, having globals for the most important objects is handy,
especially in such a small project.

1 Object* build_gui(void)
2 {
3 App = MUI_NewObject(MUIC_Application,
4 MUIA_Application_Author, (ULONG)"Grzegorz Kraszewski",
5 MUIA_Application_Base, (ULONG)"HELLOWORLD",
6 MUIA_Application_Copyright, (ULONG)" c© 2010 Grzegorz Kraszewski",

47

7 MUIA_Application_Description, (ULONG)"Hello World in MUI.",
8 MUIA_Application_Title, (ULONG)"Hello World",
9 MUIA_Application_Version, (ULONG)"$VER: HelloWorld 1.0 (16.11.2010)",

10 MUIA_Application_Window, (ULONG)(Win = MUI_NewObject(MUIC_Window,
11 MUIA_Window_Title, (ULONG)"Hello World",
12 MUIA_Window_RootObject, MUI_NewObject(MUIC_Group,
13 MUIA_Group_Child, MUI_NewObject(MUIC_Text,
14 MUIA_Text_Contents, (ULONG)"Hello world!",
15 TAG_END),
16 TAG_END),
17 TAG_END)),
18 TAG_END);
19 }

The above function creates the complete object tree for HelloWorld. The master object is the
Application class instance. It has a Window object. The window root is a Group object con-
taining one Text object. The application object has 6 attributes working as descriptors used
in different places in the system. They are not required for running the program, but help
integrating it with the system. The meaning of these attributes is explained in the autodoc
of Application class in the SDK. The rest of the attributes are self-explaining, please refer to
the autodocs of respective MUI classes for details.

The function illustrates a typical way of creating a MUI interface. The complete object tree
is created in one big MUI NewObject() call containing nested sub-calls. The order of code
execution is different to the order of reading. The most nested objects are created first and
passed to constructors of their parents. The application object is created last. This way of
creating the application also ensures automatic error handling. If any of constructors fails,
it passes NULL to a parent constructor, making it fail too and then dispose all successfully
constructed child objects. Finally the application constructor fails and returns NULL. Then
only two states of the application are possible: either the application is fully constructed, or
it is not constructed at all. This behaviour greatly simplifies error handling.

1 void notifications(void)
2 {
3 DoMethod(Win, MUIM_Notify, MUIA_Window_CloseRequest, TRUE, App, 2,
4 MUIM_Application_ReturnID, MUIV_Application_ReturnID_Quit);
5 }

The next step is to make notifications. This simple program contains only one notification,
which terminates the program after the window close gadget is clicked. MUI maps a left
mouse button click on the gadget to a change of MUIA Window CloseRequest attribute. The
notification target is the application, the MUIM Application ReturnID() method then passes
the quit action identifier to the main loop.

1 void main_loop(void)
2 {
3 ULONG signals = 0;
4

5 set(Win, MUIA_Window_Open, TRUE);
6

7 while (DoMethod(App, MUIM_Application_NewInput, &signals)

48

8 != MUIV_Application_ReturnID_Quit)
9 {

10 signals = Wait(signals | SIGBREAKF_CTRL_C);
11 if (signals & SIGBREAKF_CTRL_C) break;
12 }
13

14 set(Win, MUIA_Window_Open, FALSE);
15 }

The standard main loop has been discussed in the previous chapter. The only addition is
opening the window before the loop and closing it after.

1 int main(void)
2 {
3 App = build_gui();
4

5 if (App)
6 {
7 notifications();
8 main_loop();
9 MUI_DisposeObject(App);

10 }
11

12 return 0;
13 }

Finally, the main function of the program. It builds the object tree first and checks if it suc-
ceeded. In case of a fail, the program ends immediately. After all the objects are created,
notifications are added and the program enters the main loop. When the loop finishes, the
application object is disposed. It also disposes all its sub-objects.

2.3 Subclassing

2.3.1 General Rules and Purpose of Subclassing

2.3.1.1 Introduction

Subclassing is one of the essential object oriented programming techniques. In MUI sub-
classing is used for the following purposes:

• Implementing program functionality as a set of methods. The Application class is usu-
ally used for this purpose.

• Customizing classes by writing methods intentionally left unimplemented (or having
some default implementations) in standard MUI classes. The most common example
is the List class, but also the Numeric one and others.

• Writing custom drawn gadgets or areas. The Area class is subclassed in this case.

49

Regardless of the reason for subclassing, it is always done in the same way. A programmer
must write new methods or override existing methods, create a dispatcher function, define
an instance data structure (an empty one in some cases), then create the class. It is worth
noting, subclassing MUI classes is done the same as subclassing BOOPSI ones. The only
difference is that MUI provides its own functions for class creation and disposition.

2.3.1.2 Object Data

Object data are stored in a memory area automatically allocated for every object created.
The object data area is used for storing attribute values and for internal variables and
buffers. This area is usually defined as a structure. Size of the area is passed to the
MUI CreateCustomClass() function. In a class hierarchy, every class may add its own contri-
bution to the object data area. Unlike in C++, a class has no direct access to anything except
its own data area. It can’t access data defined in the superclass (In C++ it is possible that a
field is declared as protected or public). Object data defined in any of the superclasses may
only be accessed using methods or attributes provided by these superclasses.
Because of internal BOOPSI design, the size of the data instance area is limited to 64 kB.
Large buffers should be allocated dynamically in OM NEW() and freed in OM DISPOSE().
The area data is always cleared to all zeros at object creation. If a class does not need any
object instance data it can pass 0 as the area size to MUI CreateCustomClass().

2.3.1.3 Writing Methods

A MUI method is just a plain C function, but with a partially fixed prototype.

1 IPTR MethodName(Class *cl, Object *obj, MessageType *msg);

The method return value may be either integer or pointer to anything. That is why it uses the
IPTR type which means ”integer big enough to hold a pointer”. In the current MorphOS it
is just a 32-bit integer (the same as LONG). If a method has no meaningful value to return,
it can just return 0. Two first, fixed arguments are: pointer to the class and pointer to the
object. The last one is a method message. When a method is being overridden, the type
of message is determined by the superclass. For a new method, message type is defined
by the programmer. Some methods may have empty messages (containing only a method
identifier), in this case the third argument may be omitted. Most methods need access to
the object instance data. To get a pointer to the data area, one uses the INST DATA macro,
defined in <intuition/classes.h>. An example below shows the macro usage:

1 struct ObjData
2 {
3 LONG SomeVal;
4 /* ... */
5 };
6

7 IPTR SomeMethod(Class *cl, Object *obj)
8 {
9 struct ObjData *d = (struct ObjData*)INST_DATA(cl, obj);

50

10

11 d->SomeVal = 14;
12 /* ... */
13 return 0;
14 }

If a method is an overridden method from a superclass, it may want to perform the superclass
method. There are no implicit super method calls in MUI. The superclass method must
always be called explicitly with the DoSuperMethodA() call:

1 result = DoSuperMethodA(cl, obj, msg);
2 result = DoSuperMethod(cl, obj, MethodID, ...);

The second form rebuilds the method message from variable arguments, and is used when
the message is modified before calling the superclass method. The super method may be
called in any place of the method, or may not be called at all. For MUI standard classes
and methods, rules of calling super methods are described in the documentation and will be
discussed later in this tutorial. For custom methods the question of calling a super method
is up to the application programmer.

2.3.1.4 The Dispatcher

A dispatcher function is a kind of jump table for methods. When any method is called on
an object (with DoMethod()), BOOPSI finds the dispatcher of the object’s class and calls
it. The dispatcher checks a method identifier, which is always the first field of any method
message. Based on the identifier, a method is called. If a method is unknown to the class,
the dispatcher should pass it to the superclass with the DoSuperMethod() call.

The dispatcher is a kind of hook function. It makes its calling convention independent
of programming language. A disadvantage of this is that the dispatcher’s arguments are
passed in virtual M68k processor registers. This inconvenience allows support for legacy
M68k software and also allows for native PowerPC classes to be used by M68k applica-
tions and old M68k classes to be used by native applications. Being a hook, a dispatcher
needs an EmulLibEntry structure to be created and filled first. The structure is defined in
<emul/emulinterface.h> and acts as a data gate between PowerPC native code and the
M68k emulator.

1 const struct EmulLibEntry ClassGate =
2 {TRAP_LIB, 0, (void(*)(void))ClassDispatcher};

Then the dispatcher is defined as follows:

1 IPTR ClassDispatcher(void)
2 {
3 Class *cl = (Class*)REG_A0;
4 Object *obj = (Object*)REG_A2;
5 Msg msg = (Msg)REG_A1;
6

7 /* ... */
8 }

51

Arguments of the dispatcher are the same as arguments of a method. They are passed in
virtual M680x0 processor address registers A0, A1 and A2 instead of being just arguments.
The dispatcher’s data gate is passed as an argument to MUI CreateCustomClass(). The
data gate is used even when a native application calls a native dispatcher. It introduces
some overhead, but it’s negligible. Many programmers prefer to hide these details behind
a set of preprocessor macros, such macros have not been used here however, for better
understanding.

The Msg type is a root type for all method messages. It defines a structure containing
only the method identifier field (defined as ULONG). All following parameters have to keep
the CPU stack aligned, as DoMethod() builds the message on the stack. It requires that
every parameter is defined either as an IPTR or as a pointer.

After receiving arguments the dispatcher checks the method identifier from the message
and jumps to the respective method. It is usually implemented as a switch statement. If
only a few methods are implemented, it may also be an if/if else cascade. Here is a typical
example:

1 switch (msg->MethodID)
2 {
3 case OM_NEW:
4 return MyClassNew(cl, obj, (struct opSet*)msg);
5 case OM_DISPOSE:
6 return MyClassDispose(cl, obj, msg);
7 case OM_SET:
8 return MyClassSet(cl, obj, (struct opSet*)msg);
9 case OM_GET:

10 return MyClassGet(cl, obj, (struct opGet*)msg);
11 case MUIM_Draw:
12 return MyClassDraw(cl, obj, (struct MUIP_Draw*)msg);
13 case MUIM_AskMinMax:
14 return MyClassAskMinMax(cl, obj, (struct MUIP_AskMinMax*)msg);
15 /* ... */
16 default:
17 return DoSuperMethodA(cl, obj, msg);
18 }

For every method a message pointer is typecast to a message structure of this particular
method. Some programmers place the method’s code inside the switch statement directly,
especially if methods are short and only a few. In the example above, some methods of
Area class are overridden. The naming scheme used for the method functions is just an
example, there are no constraints on this. Although prefixing method function names with a
class name has an advantage of avoiding name conflicts between custom classes if method
functions are not declared as static.

52

2.3.1.5 Class Creation

Having all components done (methods, dispatcher, gate, object data structure) one can
create a MUI class.

1 struct MUI_CustomClass *MyClass;
2

3 MyClass = MUI_CreateCustomClass(NULL, MUIC_Area,
4 NULL, sizeof(struct MyClassData), (APTR)&MyClassGate);

The first argument is a library base if the created class is public. Writing MUI public classes
will be covered later. Let’s say for now, that public classes are implemented as shared li-
braries, so such a public class has a library base. For private classes this argument should
always be NULL.

The next two arguments are used alternatively and specify the superclass. The superclass
may be either private (referenced by pointer) or public (referenced by name). Public classes
are usually subclassed, so the pointer is set to NULL as in the example. More complex
projects may use multilevel subclassing and subclass their own private classes. In this case,
a pointer to a private class is passed as the first argument and the second one is NULL.

The fourth argument defines the size of the object data area in bytes. In most cases ob-
ject data area is defined as a structure, so using the sizeof() operator is the obvious way of
determining the size. If the class does not need any per-object data, zero may be passed
here.

The last argument is an address of the data gate (EmulLibEntry structure). Programmers
experienced on M68k programming may notice that there is a difference - in M68k code only
the dispatcher function address is used here. As mentioned above, seamless M68k code
support requires that program execution passes through the data gate when going from sys-
tem code to the dispatcher. That is why the data gate address is placed as this argument,
then the data gate contains a real dispatcher address.

2.3.1.6 Class Disposition

A MUI class is disposed with a call to MUI DeleteCustomClass().

1 if (MyClass) MUI_DeleteCustomClass(MyClass);

Some conditions must be fulfilled before calling this function.

• Call it only if the class was successfully created. Calling it with a NULL class pointer is
deadly (hence the checking for NULL in the example).

• Do not delete a class if it has any remaining subclasses or objects. The best practice is
to create all classes before creating the application GUI and to dispose them after the
final MUI DisposeObject() of the main Application object. Classes should be deleted in
the reversed order of creation. MUI DeleteCustomClass() returns a boolean value. It
is FALSE when a class cannot be deleted because of potentially orphaned subclasses
or objects.

53

2.3.2 Overriding Constructors

An object constructor (OM NEW() method), takes the same message structure opSet as
the OM SET() method. The message contains the ops AttrList field, being a pointer to a
taglist containing the initial object’s attributes. Implementation of a constructor for an object
without child objects is simple. The superclass constructor is called first, then, if it succeeds,
the constructor initializes object instance data, allocates resources needed and sets initial
values of attributes from tags passed via ops AttrList.
A rule of thumb when overriding constructors is to never leave a half-constructed object.
The constructor should either return a fully constructed object, or fail completely, freeing
all successfully obtained resources. This is important if the object obtains more than one
resource and any of the resource allocation has failed (for example allocating a big chunk of
memory or opening a file). An example implementation below obtains three resources: A, B
and C:

1 IPTR MyClassNew(Class *cl, Object *obj, struct opSet *msg)
2 {
3 if (obj = DoSuperMethodA(cl, obj, (Msg)msg))
4 {
5 struct MyClassData *d = (struct MyClassData*)INST_DATA(cl, obj);
6

7 if ((d->ResourceA = ObtainResourceA()
8 && (d->ResourceB = ObtainResourceB()
9 && (d->ResourceC = ObtainResourceC())

10 {
11 return (IPTR)obj; /* success */
12 }
13 else CoerceMethod(cl, obj, OM_DISPOSE);
14 }
15 return NULL;
16 }

If the object destructor frees resources A, B and C (which would be logical considering the
constructor allocates them), the cleanup job may be delegated to the destructor. It requires
however, that the destructor must be prepared for destruction of a not fully constructed ob-
ject. It can’t assume all three resources have been allocated, so it should check every
resource pointer against NULL before calling a freeing function. The destructor also takes
care of calling a superclass destructor when resources are freed. See Overriding Destruc-
tors for some destructor example code and explanation.
The only question remaining is what CoerceMethod() does and why it is used instead of a
plain DoMethod()? The CoerceMethod() call works exactly the same as DoMethod(), but
performs method coercion by a forced call to the dispatcher of the class specified as the first
argument instead of the dispatcher of the object’s true class. It makes a difference, when
the class in question is later subclassed. The flowchart below explains the problem:

The class B on the diagram is a subclass of the class A and similarly, the class C is a sub-
class of B. Let’s assume an object of the class C is being constructed. As every constructor
calls the superclass first, the call goes up to rootclass (the root of all BOOPSI classes)
first. Then going down the class tree, every class constructor allocates its resources. Un-
fortunately the constructor of class A has been unable to allocate one of its resources and
decided to fail. If it had just called DoMethod(obj, OM DISPOSE) it will unnecessarily exe-
cute destructors in classes B and C, while constructors in these classes have been not yet

54

Figure 2.5: Flowchart of CoerceMethod()

fully executed. Even if these destructors can cope with this, calling them is superfluous. With
the CoerceMethod() the destructor in the class A is called directly. Then class A construc-
tor returns NULL, which causes constructors in classes B and C to fail immediately without
resource allocation attempts.

2.3.2.1 Objects with child objects

While retaining the same principles, the constructor of an object with subobjects is designed
a bit differently. The most commonly subclassed classes able to have child objects are
Application, and Group. The Window class is also often subclassed in a similar way. While
a Window object can have only one child, specified by MUIA Window RootObject, this child
often has multiple subobjects. The constructor should create its child objects first, then
insert them into the ops AttrList taglist and call the superclass constructor. If it succeeds,
then resources may be allocated if needed. As any of the three constructor stages may
fail, proper handling of errors becomes complicated. Also inserting objects created into the
taglist as values of child tags (like MUIA Group Child) is cumbersome. Fortunately one can
use the DoSuperNew() function, which merges the creation of subobjects and the calling of
the superclass into one operation. It also provides automatic handling of failed child object
construction. An example below is a constructor for a Group subclass putting two Text
objects in the group.

1 IPTR MyClassNew(Class *cl, Object *obj, struct opSet *msg)
2 {
3 if (obj = DoSuperNew(cl, obj,
4 MUIA_Group_Child, MUI_NewObject(MUIC_Text,
5 /* attributes for the first subobject */
6 TAG_END),
7 MUIA_Group_Child, MUI_NewObject(MUIC_Text,
8 /* attributes for the second subobject */
9 TAG_END),

10 TAG_MORE, msg->ops_AttrList))
11 {
12 struct MyClassData *d = (struct MyClassData*)INST_DATA(cl, obj);
13

14 if ((d->ResourceA = ObtainResourceA()
15 && (d->ResourceB = ObtainResourceB()
16 && (d->ResourceC = ObtainResourceC())
17 {

55

18 return (IPTR)obj; /* success */
19 }
20 else CoerceMethod(cl, obj, OM_DISPOSE);
21 }
22 return NULL;
23 }

An important thing to observe is the fact, that DoSuperNew() merges the taglist passed
to the constructor via the message ops AttrList field and the one specified in the function
arguments list. It is done with a special TAG MORE tag, which directs a taglist iterator (like
NextTagItem() function) to jump to another taglist pointed by the value of this tag. Taglist
merging allows for modifying the object being constructed with tags passed to NewObject(),
for example adding a frame or background to the group in the above example.
The automatic handling of failed child objects works in the following way: when a subobject
fails, its constructor returns NULL. This NULL value is then inserted as the value of a ”child”
tag (MUIA Group Child) in the example. All MUI classes able to have child objects are
designed in a way that:

• the constructor fails if any ”child” tag has a NULL value,

• the constructor disposes any successfully constructed child objects before exiting.

Finally DoSuperNew() returns NULL as well. This design ensures that in case of any fail
while building the application, all objects created are disposed and there are no orphaned
ones.

2.3.3 Overriding Destructors

The only task of a destructor is freeing resources allocated by the constructor and other
methods (some resources may be allocated on-demand only). In any case the destructor
must leave the object in the same state as right after DoSuperMethod()/DoSuperNew() in the
constructor. After that the destructor calls a super class destructor. The destructor receives
an empty message.

1 IPTR MyClassDispose(Class *cl, Object *obj, Msg msg)
2 {
3 struct MyClassData *d = (struct MyClassData*)INST_DATA(cl, obj);
4

5 if (d->ResourceA) FreeResourceA();
6 if (d->ResourceB) FreeResourceB();
7 if (d->ResourceC) FreeResourceC();
8 return DoSuperMethodA(cl, obj, msg);
9 }

The example destructor follows the example of the constructor in the Overriding Constructors
article. Three resources obtained in the constructor are freed here. The destructor is also
prepared for a partially constructed object, every resource is checked against NULL before
freeing. If for some type of resource NULL is a valid handle, an additional flag may be added
to the object instance data area.

56

2.3.4 Overriding OM SET()

The OM SET() method receives an opSet structure as its message. The structure is defined
in the <intuition/classusr.h> header.

1 struct opSet
2 {
3 ULONG MethodID; /* always OM_SET (0x103) */
4 struct TagItem *ops_AttrList;
5 struct GadgetInfo *ops_GInfo;
6 };

The most important field is ops AttrList. It is a pointer to a taglist containing attributes and
values to be set. The ops GInfo field is an obsolete legacy thing and is not used by modern
components like MUI or Reggae. The method implementation should iterate the taglist and
set all attributes recognized. The operation of setting an attribute may be just setting some
field in an object instance data, it may also trigger some actions (like for example object
redrawing). It is recommended however that complex actions are implemented as methods
rather than attribute changes. A reference implementation of OM SET() may look like this:

1 IPTR MyClassSet(Class *cl, Object *obj, struct opSet *msg)
2 {
3 struct TagItem *tag, *tagptr;
4 IPTR tagcount = 0;
5

6 tagptr = msg->ops_AttrList;
7

8 while ((tag = NextTagItem(&tagptr)) != NULL)
9 {

10 switch (tag->ti_Tag)
11 {
12 case SOME_TAG:
13 /* attribute setting actions for SOME_TAG */
14 tagcount++;
15 break;
16

17 /* more tags here */
18 }
19 }
20

21 tagcount += DoSuperMethodA(cl, obj, (Msg)msg);
22 return tagcount;
23 }

The taglist iteration is done with the NextTagItem() function from the utility.library. The func-
tion returns a pointer to the next tag each time it is called and keeps the current posi-
tion in tagptr. The advantage of this function is automatic handling of special tag values
(TAG MORE, TAG IGNORE, TAG SKIP), they are not returned, but their actions are per-
formed instead.

The OM SET() function returns the total number of recognized tags. It is implemented with

57

tagcounter. It gets incremented on every tag recognized and finally the number of tags rec-
ognized by superclass(es) is added.

Common bugs in OM SET() implementation are:

• ignoring tag counting

• calling the super method in the default case of a switch statement. It causes the su-
permethod to be called multiple times, once for every tag not handled by the subclass.

2.3.5 Overriding OM GET()

The OM GET() method, used for getting an attribute from an object, receives an opGet
structure as its message. The structure is defined in the <intuition/classusr.h> header file:

1 struct opGet
2 {
3 ULONG MethodID; /* always OM_GET (0x104) */
4 ULONG opg_AttrID;
5 ULONG *opg_Storage;
6 };

Unlike OM SET(), this method handles only one attribute at a time. The attribute is placed
in the opg AttrID field. The field opg Storage is a pointer to a place where the attribute
value should be stored. It is defined as a pointer to ULONG, but it may point to anything
(for example to some larger structure). It allows for passing attributes not fitting in a 32-bit
variable. Because OM GET() does not have a taglist iteration loop, its implementation is
simple:

1 IPTR MyClassGet(Class *cl, Object *obj, struct opGet *msg)
2 {
3 switch (msg->opg_AttrID)
4 {
5 case Some_Integer_Tag:
6 *msg->opg_Storage = /* value of the tag */;
7 return TRUE;
8

9 case Some_String_Tag:
10 *(char**)msg->opg_Storage = "a fixed string value";
11 return TRUE;
12 }
13

14 return DoSuperMethodA(cl, obj, (Msg)msg);
15 }

The implementation consists of a switch statement with cases for all recognized attributes.
If an attribute is recognized, the method should return TRUE. It is very important, as MUI
notifications rely on OM GET() and will not work on the attribute if TRUE is not returned.
Unknown attributes are passed to the superclass. The DoSuperMethodA() call may be al-
ternatively placed as the default clause of the switch statement. It is important that msg->
opg Storage is dereferenced when storing the attribute value. If the value type is not inte-
ger, a typecast is needed. For a value type T, the dereferencing combined with typecast is
denoted as *(T*).

58

2.3.6 Subclassing Application Class

Every MUI application is (or at least should be) an event driven one. This means the applica-
tion provides a set of actions, which may be triggered with user activity (like using the mouse
and keyboard). The straightforward way of implementing this set of actions is to implement it
as a set of methods added to some MUI object. For simple programs, the best candidate for
adding such methods is the master Application object. More complex programs (for example
ones using a multi-document interface) may add actions to other classes, for example the
Window class.

Why methods? Implementing actions as methods has many advantages:

• Methods may be used directly as notification actions. It saves a programmer from
using hook tricks or cluttering the main loop with lots of ReturnID values.

• Methods may be coupled directly with scripting language interface (formerly known as
ARexx interface) commands.

• Methods used in notifications are executed immediately in response to user actions.
No delay is introduced by the main loop (especially if it is not empty).

• A notification triggering attribute value may be passed directly to a method as its pa-
rameter.

• Using methods improves code modularity and object encapsulation. Functionality
meant to be handled in the scope of an object is handled in its method, without the
code spreading across the project.

In a well designed MUI program, all program actions and functionality are implemented as
methods and the program internal state is stored as a set of attributes and internal applica-
tion instance data fields. An example of such a program is discussed throughly in the MUI
Subclassing Tutorial: SciMark2 Port article.

2.3.7 MUI Subclassing Tutorial: SciMark2 Port

2.3.7.1 The application

Many programming tutorials tend to bore readers with some useless examples. In this one
a ”real world” application will be ported to MorphOS and ”MUI-fied”. The application is Sci-
Mark 21. SciMark is yet another CPU/memory benchmark. It performs some typical scientific
calculations like Fast Fourier Transform, matrix LU decomposition, sparse matrix multiplica-
tion and so on. The benchmark measures mainly CPU speed at floating point calculations,
cache efficiency and memory speed. Being written in Java initially, it has been rewritten in
C (and in fact in many other languages). The C source is available on the project homepage2.

The source uses only the pure ANSI C standard, so it is easily compilable on MorphOS
using the provided Makefile. One has just to replace the CC = cclinetoCC = gcc, to match
the name of the MorphOS compiler. As a result, a typical shell-based application is obtained.
Here are example results for a Pegasos 2 machine with G4 processor:

1http://math.nist.gov/scimark2/index.html
2http://math.nist.gov/scimark2/download c.html

59

http://math.nist.gov/scimark2/index.html
http://math.nist.gov/scimark2/download_c.html

Figure 2.6: Screenshot of Scimark with no options

Not very impressive in fact. This is because no optimizaton flags are passed to the compiler
in the makefile. They can be added by inserting the line CFLAGS = −O3belowtheCC = gcc
line. Let’s also link with libnix (a statically linked unix environment emulation, see Standard
C and C++ Libraries) by adding -noixemul to CFLAGS and LDFLAGS. After rebuilding the
program and running it again the results are significantly improved (the program has been
compiled with GCC 4.4.4 from the official SDK).

Figure 2.7: Screenshot of Scimark with options

This shows how important optimization of the code is, especially for computationally inten-
sive programs. Optimized code is more than 4 times faster!

2.3.7.2 Code inspection

The original source code is well modularized. Five files: FFT.c, LU.c, MonteCarlo.c, SOR.c
and SparseCompRow.c implement the five single benchmarks. Files array.c and Random.c
contain auxiliary functions used in the benchmarks. The file Stopwatch.c implements time
measurement. An important file kernel.c gathers all the above and provides timing for the
five functions performing all the benchmarks. Finally scimark2.c contains the main() function
and implements the shell interface.
The planned MUI interface should allow the user to run every benchmark separately or run
all of them. There is also a -large option, which increases memory sizes for calculated prob-
lems, so they do not fit into the processor cache. A general rule of porting is that as few
files as possible should be modified. The rule makes it easier to upgrade the port when
a new version of the original program is released. In the case of SciMark, only one file,
scimark2.c has to be replaced. An advanced port may also replace Stopwatch.c with code
using timer.device directly for improved accuracy of time measurements however, this is out
of scope of this tutorial.
A closer look at ”scimark2.c” reveals that there is a Random object (a structure defined in
”Random.h”), which is required for all the benchmarks. In the original code it is created with
new Random seed() at the program start and disposed with delete Random() at exit. The

60

best place for it in the MUI-ified version is the instance data area of the subclassed Applica-
tion class. Then it can be created in OM NEW() of the class and deleted in OM DISPOSE().
These two methods should then be overridden.

2.3.7.3 GUI design

Of course there is no one and only proper GUI design for SciMark. A simple design, using
a limited set of MUI classes is shown on the left. There are five buttons for individual bench-
marks and one for running all of them. All these buttons are instances of the Text class. On
the right there are gadgets for displaying benchmark results. These gadgets also belong to
the Text class, just having different attributes. The ”Large Data” button, of the Text class of
course, is a toggle button. Surprisingly the status bar (displaying ”Ready.”) is not an instance
of the Text class, but instead the Gauge class. Then it will be able to display a progress bar
when running all five tests. Spacing horizontal bars above the ”All Benchmarks” button are
instances of the Rectangle class. There are also three invisible objects of the Group class.
The first is a vertical, main group, being the root object of the window. It contains two sub-
groups. The upper one is the table group with two columns and contains all the benchmark
buttons and result display gadgets. The lower group contains the ”Large Data” toggle button
and the status bar.

Figure 2.8: Screenshot of Scimark 2 GUI

The simplest way to start with GUI design is just to copy the ”Hello World” example. Then
MUI objects may be added to the build gui() function. The modified example is ready to
compile and run. It is not a complete program of course, just a GUI model without any
functionality added.
A quick view into the build gui() function reveals that it does not contain all the GUI code.
Code for some subobjects is placed in functions called from the main MUI NewObject().
Splitting the GUI building function into many subfunctions has a few important advantages:

• Improved code readability and easier modifications. A single MUI NewObject() call
gets longer and longer quickly as the project evolves. Editing a large function spanning
over a few screens is uncomfortable. Adding and removing GUI objects in such a
function becomes a nightmare even with indentation used consequently. On the other
hand the function can have 10 or more indentation levels, which makes it hard to read
as well.

61

• Code size reduction. Instead of writing very similar code multiple times, for example
buttons with different labels, a subroutine may be called with a label as an argument.

• Debugging. It happens sometimes that MUI refuses to create the application object
because of some buggy tags or values passed to it. If the main MUI NewObject()
call is split into subfunctions, it is easy to isolate the buggy object by inserting some
Printf()-s in subfunctions.

2.3.7.4 Methods and attributes

The SciMark GUI just designed, defines six actions for the application. There are five actions
for running individual benchmarks and the sixth one for running all the tests and calculating
the global result. Actions will be directly mapped to Application subclass methods. There is
also one attribute connected with the ”Large Data” button, it determines the sizes of prob-
lems solved by benchmarks. Methods do not need any parameters, so there is no need to
define method messages. An attribute may be applicable at initialisation time (in the object
constructor), may be also settable (needs OM SET() method overriding) and gettable (needs
OM GET() method overriding). Our new attribute, named APPA LargeData in the code only
needs to be settable. In the constructor it can be implicitly set to FALSE, as the button is
switched off initially. GET-ability is not needed, because this attribute will be used only inside
the Application subclass.
It is recommended that every subclass in the application is placed in a separate source file.
It helps to keep code modularity and also allows for hiding class private data. This requires
writing a makefile, but one is needed anyway, as the original SciMark code consists of mul-
tiple files. Implementing the design directions discussed above a class header file and class
code can be written. The class still does nothing, just implements six empty methods and
overrides OM SET(), OM NEW() and OM DISPOSE(). In fact it is a boring template example
and as such it has been generated with the ChocolateCastle template generator. Unfortu-
nately ChocolateCastle is still beta, so files had to be tweaked manually after generation.
The next step in the application design is to connect methods and attributes with GUI el-
ements using notifications. Notifications must of course be created after both source and
target object are created. In the SciMark code they are just set up after executing build gui().
All the six action buttons have very similar notifications, so only one is shown here:

1 DoMethod(findobj(OBJ_BUTTON_FFT, App), MUIM_Notify, MUIA_Pressed, FALSE,
2 App, 1, APPM_FastFourierTransform);

The ”Large Data” button has a notification setting the corresponding attribute:

1 DoMethod(findobj(OBJ_BUTTON_LDATA, App), MUIM_Notify, MUIA_Selected,
2 MUIV_EveryTime, App, 3, MUIM_Set, APPA_LargeData,
3 MUIV_TriggerValue);

Notified objects are accessed with dynamic search (the findobj() macro), which saves the
programmer from defining global variables for all of them.

62

2.3.7.5 Implementing functionality

The five methods implementing single SciMark benchmarks are very similar, so only one,
running the Fast Fourier Transform has been shown:

1 IPTR ApplicationFastFourierTransform(Class *cl, Object *obj)
2 {
3 struct ApplicationData *d = INST_DATA(cl, obj);
4 double result;
5 LONG fft_size;
6

7 if (d->LargeData) fft_size = LG_FFT_SIZE;
8 else fft_size = FFT_SIZE;
9

10 SetAttrs(findobj(OBJ_STATUS_BAR, obj),
11 MUIA_Gauge_InfoText,
12 (LONG)"Performing Fast Fourier Transform test...",
13 MUIA_Gauge_Current, 0,
14 TAG_END);
15

16 set(findobj(OBJ_RESULT_FFT, obj), MUIA_Text_Contents, "");
17 set(obj, MUIA_Application_Sleep, TRUE);
18 result = kernel_measureFFT(fft_size, RESOLUTION_DEFAULT, d->R);
19 NewRawDoFmt("%.2f MFlops (N = %ld)",
20 RAWFMTFUNC_STRING, d->Buf, result, fft_size);
21 set(findobj(OBJ_RESULT_FFT, obj), MUIA_Text_Contents, d->Buf);
22 set(obj, MUIA_Application_Sleep, FALSE);
23 set(findobj(OBJ_STATUS_BAR, obj), MUIA_Gauge_InfoText, "Ready.");
24 return 0;
25 }

The code uses dynamic object tree search for accessing MUI objects.
The method sets the benchmark data size first, based on the d->LargeData switch variable.
This variable is set with the APPA LargeData attribute, which in turn is bound to the ”Large
Data” button via a notification. Then the status bar progress is cleared and some text is set
to inform the user what is being done. The result textfield for the benchmark is cleared as
well.
The next step is to put the application in the ”busy” state. It should be always done, when
the application may not be responding to user input for anything longer than, let’s say half
a second. Setting MUIA Application Sleep to TRUE locks the GUI and displays the busy
mouse pointer when the application window is active. Of course offloading processor inten-
sive tasks to a subprocess is a better solution in general cases, but for a benchmark it makes
little sense. A user has to wait for the benchmark result anyway before doing anything else,
like starting another benchmark. The only usability problem is that a benchmark can’t be
stopped before it finishes. Let’s leave it as is for now, for a benchmark, where the computer
is expected to use all its computing power for benchmarking, a few seconds of GUI being
unresponsive is not such a big problem.
The next line of code runs the benchmark, by calling kernel measureFFT() function from the
original SciMark code. After the benchmark is done, the result is formatted and displayed
in the result field using NewRawDoFmt(), which is a low-level string formatting function from
exec.library and with the RAWFMTFUNC STRING constant, it works just like sprintf(). It
uses a fixed buffer of 128 characters (which is much more than needed, but adds a safety
margin) located in the object instance data. Unsleeping the application and setting the sta-
tus bar text to ”Ready.” ends the method.

63

The APPM AllBenchmarks() method code is longer so it is not repeated here. The method
is very similar to the single benchmark method anyway. The difference is it runs all 5 tests
accumulating their results in a table. It also updates the progress bar after every benchmark.
Finally it calculates a mean score and displays it.

2.3.7.6 Final port

The complete source of SciMark2 MUI port3. The program may be built by running make in
the source directory.

2.4 Useful Techniques

2.4.1 Locating Objects in the Object Tree

After the complete object tree is created, there is no direct access to any object except the
main Application object. A way to access other objects is needed. There are a few ways to
do this:

• Storing pointers to objects in global variables. This is the simplest way and may work
well in simple projects. The disadvantage is it breaks object oriented design principles
(like data encapsulation) and creates a mess when the number of global variables
reaches 50, 100 or more.

• Store pointers in fields of some subclass instance data (for example the Application
instance). A good idea, but a bit tedious to implement. An object’s instance data area
does not exist until the object is created (to be precise - until rootclass constructor is
executed) and the Application object is created as the last one. Then pointers to sub-
objects have to be stored in some temporary variables. This technique also requires
that a parent object of the cached one is an instance of a custom (subclassed) class
and the parent creates its subobjects inside the constructor, which is not always true.

• Use the MUIA UserData attribute and the MUIM FindUData() method to find objects
dynamically. This is the best solution when objects are accessed rarely (for example
once, just to set notifications). For frequently accessed objects (let’s say several times
a second) it may be combined with caching objects’ pointers in an instance data of
some subclassed object.

The last approach works as follows: every object to be searched has the MUIA UserData
attribute set to some predefined unique value. Then at any time the object may be found
by this value using the MUIM FindUData() method on a direct or indirect parent object, for
example on the master Application object.

1 #define OBJ_SOME_BUTTON 36
2

3http://krashan.ppa.pl/morphzone tutorials/scimark2 mui.lha

64

http://krashan.ppa.pl/morphzone_tutorials/scimark2_mui.lha

3 /* Somewhere in the initial tags for the button */
4 MUIA_UserData, OBJ_SOME_BUTTON,
5 /* ... */
6

7 /* Let’s get the pointer to the button now */
8

9 Object *some_button;
10

11 some_button = (Object*)DoMethod(App, MUIM_FindUData, OBJ_SOME_BUTTON);

This operation is so common that it is usually encapsulated in a macro:

1 #define findobj(id, parent)\
2 (Object*)DoMethod(parent, MUIM_FindUData, id)
3

4 some_button = findobj(OBJ_SOME_BUTTON, App);

The macro may of course be used directly in other functions, like in this example changing
the button label:

1 set(findobj(OBJ_SOME_BUTTON, App), MUIA_Text_Contents, "Press Me");

Note that the findobj() macro is not defined in the system MUI headers, so it should be
defined in the application code.

2.4.2 Text Class: Buttons, Textfields, Labels

2.4.2.1 Introduction

The Text class is the most commonly used one for creating gadgets. This is because it
not only creates plain labels (also called ”static text” in other GUI engines), but also framed
read-only text gadgets and textual buttons. In fact MUI has no special class for buttons, a
button is just a Text object with a proper frame and background and user input activated. This
versatility can have the disadvantage of allowing for creation of style guide nonconforming
interfaces.

The Text class uses the MUI Text Rendering Engine for text output. It allows for multiline
text, using styles (bold, italic), colors and inlined images. These features should be used
sparingly to keep user interfaces consistent and comfortable to use. The rendering engine
is controlled by inserting escape sequences in the text. Another engine feature is aligning
the text inside the object rectangle (left, right, centered).

65

2.4.2.2 Common attributes

• MUIA Background and MUIA Frame are attributes inherited from the Area class. They
specify a background and frame used for an object.

• MUIA Text Contents specifies the text. It may contain formatting engine escape se-
quences. The text is buffered internally, so the value of this attribute may point to a
local variable or a dynamically allocated buffer.

• MUIA Text PreParse may be considered a fixed prefix, which is always added at the
start of text before rendering. It is usually used for applying constant styles and format-
ting, for example setting it to ”
33c” will always center the text. This attribute simplifies text handling when the text
displayed is not constant (for example is loaded from a locale catalog).

• MUIA Font is another attribute inherited from the Area class and specifies a font to be
used for text rendering. In most cases it is one of the fonts predefined by the user in
MUI settings.

For more attributes and detailed descriptions refer to the Text class autodoc in the SDK.

2.4.2.3 Labels

Labels are the simplest form of Text instances. They have no frame and inherit their back-
ground from the parent object (neither MUIA Frame nor MUIA Background is specified).
They use the standard MUI font in most cases, so MUIA Font does not need to be speci-
fied either. An important (and often forgotten) detail is a proper text baseline align when a
label is used with some framed gadget also containing text (a String gadget for example).
The default MUI behaviour for vertical text positioning is to center it. If the framed gadget
uses uneven vertical padding, baselines of the label and the gadget may be unaligned. A
special attribute MUIA FramePhantomHoriz solves this problem. It is specified for a label
with a TRUE value. The label also has MUIA Frame specified with the same frame type as
the gadget. Then the label gets an invisible frame of this type (frame horizontal parts to be
exact, hence the attribute name) and the text is laid out accordingly. As a result the label
and the gadget text are always aligned vertically, assuming they use the same font.

Figure 2.9: Screenshot of label alignment

The magnified screenshot above illustrates the label align problem. The string gadget uses
uneven padding (top padding is 2 pixels, bottom padding is 0 pixels), which causes the text
baseline to misalign by 1 pixel shown on the left. The label on the right has been defined
with two additional tags:

1 MUIA_FramePhantomHoriz, TRUE,
2 MUIA_Frame, MUIV_Frame_String,

A label can have one character underlined with the MUIA Text HiChar attribute. It is used to
create a visual hint for a hotkey of a labeled gadget. See Buttons section below for details.

66

2.4.2.4 Textfields

A textfield is a read-only framed area showing some (usually changing at runtime) text. The
difference between a label and a textfield is that the latter has a frame and a background
specified:

1 MUIA_Frame, MUIV_Frame_Text,
2 MUIA_Background, MUII_TextBack,

2.4.2.5 Buttons

A text button is an instance of the Text class too. It has more attributes than a plain label
however, because it handles user input. MUI has a predefined background and frame for
buttons:

1 MUIA_Frame, MUIV_Frame_Button,
2 MUIA_Background, MUII_ButtonBack,

These attributes also specify a frame and background for the ”pressed” state. MUI also has
separate font settings for buttons. Forgetting the MUIA Font attribute for buttons is one of
most common errors in MUI design.

1 MUIA_Font, MUIV_Font_Button,

Many users (and programmers) just have the default font defined for buttons, so the bug
is not visible. It is recommended to always test a GUI with some unusual font settings for
buttons, so the problem is easily visible. Button text is usually centered, which may be done
either by inserting the ”
33c” sequence at the start of the button label, or using MUIA Text PreParse.

1 MUIA_Text_PreParse, "\33c",

After definition of the button appearance it is time to handle user input. The button behaviour
is defined by the MUIA InputMode attribute with three values:

• MUIV InputMode None - The default value, button does not react on anything.

• MUIV InputMode RelVerify - A simple pushbutton activated by a left mouse button
click.

• MUIV InputMode Toggle - A two-state button, one click switches it on, another one
switches it off.

67

Another common bug with MUI buttons is to omit keyboard handling. The mouse is not
everything. The first, obligatory step is to enter the button into the window’s TAB key cycle
chain:

1 MUIA_CycleChain, TRUE,

Any gadget entered into the chain may be selected by pressing the TAB key (for default MUI
keyboard settings). The selected object has a special frame drawn around it. Then it may
be activated by some key set in MUI preferences. For buttons the default ”pressing” key is
the return key. A rule of thumb for cycle chaining:

Every gadget accepting user input must be added to the TAB cycle chain.

Another keyboard handling feature provided by MUI is hotkeys. A hotkey just activates a
button associated to it. Hotkeys have the following features:

• MUI provides a visual hint of a button hotkey by underlining the hotkey letter in the
button label. It implies that the hotkey letter must exist in the label.

• There is visual feedback for using a hotkey, the button is pressed as if it has been
clicked with the mouse.

Not every button in a GUI has to have a hotkey. The best practice is to assign hotkeys only
for the most used buttons, especially if there are many buttons in a window. A hotkey is
defined with two attributes:

• MUIA Text HiChar - this attribute specifies a letter to be underlined in the label. It is
case insensitive.

• MUIA ControlChar - this attribute specifies a hotkey. Of course it should be the same
as the above one. It should be a lowercase letter, as uppercase forces a user to
press SHIFT, making the hotkey less comfortable to use. here is also no visual hint
for SHIFT requirement. Digits may be also used as hotkeys if the label contains them.
Using punctuation and other characters should be avoided. An example of use:

1 MUIA_Text_Contents, "Destroy All",
2 MUIA_Text_HiChar, ’a’,
3 MUIA_Text_ControlChar, ’a’

Note that these attributes take a single char, not a string.

68

Chapter 3

Reggae: MorphOS multimedia
framework

Author: Grzegorz Kraszewski
Source: http://library.morphzone.org/Reggae: MorphOS multimedia framework

3.1 Introduction

Reggae is the name for modular MorphOS subsystem for handling media files (currently pic-
tures and sounds, video and other contents will come in the future). Reggae is implemented
as a large set of MorphOS shared libraries stored in MOSSYS:Classes/Multimedia/ direc-
tory. Third party Reggae classes may be copied to SYS:Classes/Multimedia/. Using Reggae
an application developer can easily perform following tasks related to media processing:

• Recognizing media type and format.

• Streaming media via different transports.

• Demultiplexing compound media streams.

• Decoding media to plain, uncompressed format.

• Processing by applying filters.

• Presenting media to the user.

• Encoding and multiplexing.

Reggae is an object oriented framework. Every media processing task creates a pipe (or
tree) of Reggae objects connected to each other. Media data travel along this structure in
relatively small chunks. This pipelined processing allows for handling very big data, much
bigger than available system memory.

69

http://library.morphzone.org/Reggae:_MorphOS_multimedia_framework

3.2 Overview

This section contains general Reggae information, its design principles, usage patterns and
rules.

3.2.1 Kinds of Reggae classes

3.2.1.1 Multimedia.class

This is the master class of Reggae. It estabilishes basic methods and attributes. It also
performs Reggae initialization when opened the first time after boot. All other classes are
subclasses of multimedia.class. This class is also responsible for data formats detection
and automatic building of decoding tree. It also provides secondary functionality like event
logging, metadata support, AltiVec friendly memory allocations and more. Because of all
these features multimedia.class is the one and only Reggae class having shared library API
except of BOOPSI (object) one.

3.2.1.2 Streams

Streams form input data abstraction layer of Reggae. A stream is always the first object in
any Reggae processing structure. It has one output port. All streams have common set of
attributes and methods for data fetching and control. Currently available streams are:

• memory.stream for accessing data in memory: buffered, generated or embedded in
application code.

• file.stream for reading files via dos.library.

• http.stream is easy to use yet powerful implementation of HTTP/1.1 protocol client. It
can fetch any network resource available via HTTP GET request.

While memory.stream and file.stream are relatively simple wrappers, http.stream is a com-
ponent useful stadalone as well as a Reggae data source. Any application can just use it for
easy data downloading via HTTP, without even touching sockets API and dealing with HTTP
internals.

3.2.1.3 Demuxers

Every media format recognized by Reggae has its own demuxer. Demuxer class is responsi-
ble for format recognition, header decoding, metadata extraction and demultiplexing (hence
the name) media streams to separate output ports. While there is no real demultiplexing in
simple audio or image formats, splitting functionality between demuxer and decoder allows
for code reusing, as multiple demuxers may use the same decoder class (for example all
demuxers for audio formats using uncompressed PCM, use audiopcm.decoder).
There are also a few ”general” demuxers not associated with particular data format. They ei-
ther handle some common metadata (like id3tag.demuxer), or common compression schemes
at datastream level (xpk.demuxer). Such demuxers are usually the first stage of demuxer
cascade.

70

3.2.1.4 Decoders

A decoder takes a single, demuxed media stream and converts it to one of 3.2.2 Reggae
common formats. This conversion usually means decompression and decoding of stream.
Some decoders are dedicated to one particular media format, some are more general and
used with many demuxers.

3.2.1.5 Filters

A Reggae filter accepts data in one of 3.2.2 Reggae common formats, performs some trans-
formation on data and deliver them in the same or other Reggae common format. Most
filters have the same format on inputs and outputs, but it is not the rule of thumb. Imagine a
filter generating visualisations for audio player, it will accept audio and generate video.

3.2.1.6 Encoders

(Dec.2011) TBD

3.2.1.7 Muxers

(Dec.2011) TBD

3.2.1.8 Outputs

Outputs form output abstraction layer of Reggae. They are not symmetrical to 3.2.1.2
streams however. Outputs can be divided into two groups:

• user presentation outputs, which direct data stream to some output device of a com-
puter (audio.output, picture.output),

• storage outputs, which store data stream somewhere (file.output).

Constructing a chain of connected Reggae objects does not start data processing automat-
ically. Reggae is a pull-driven system, so something must pull data at the end of chain. It
may be the application, who actively call MMM Pull() method on output port(s) at the end of
chain. Then it just gets data in some memory buffer and can do whatever it wants with them.
Alternatively the last chain object may be an instance of some Reggae output class. Then
the whole processing is done by Reggae.
Every Reggae output object creates a subprocess which pulls data from the chain of objects
and either stores them or presents to the user. It means that all Reggae data processing is
automatically offloaded from application to the subprocess. Main application process
is free to handle GUI, display processing progress and control the processing by performing
methods on the output object. Subprocessing Reggae chain makes creating GUI-based ap-
plications easier, and allows for example background processing, just by setting subprocess
priority below 0. It may be useful for storage outputs. User presentation outputs have to
work in real time, so their default priorities are above 0.

71

3.2.1.9 Internal classes

There are some helper classes, which are used by Reggae internally, but may be interesting
for advanced Reggae programmers. Here is a brief description of them:

• processblock.class is used for grouping sets of connected objects into groups seen
as a single object from outside. For example MediaNewObject() call returns a ”single”
object, which is in fact a complete tree consisting of at least four objects (a stream, a
multiread buffer, a demuxer and a decoder).

• multiread.buffer implements a FIFO buffer with data peeking feature. It is used in
format recognition process to present the same stream header to multiple recognition
routines, even if the source stream is not seekable.

See autodocs of these classes for more details.

3.2.2 Reggae common formats

Reggae common format or basic media format is the final result of media decoding, also
intermediate format for processing (with “filters”) and input format for encoding and multi-
plexing. These formats are just raw PCM samples for audio and raw ARGB pixels for video.
Stream description, like number of audio channels or video dimensions, is provided via at-
tributes.

3.2.2.1 Audio common formats

All audio common formats are streams of linear PCM samples. Multichannel streams are
interleaved. Stereo streams are intereleaved in [left, right] order. Interleaving for more chan-
nels is not yet defined. There are three sample formats defined:

• MMFC AUDIO INT16 - the most common format, samples are 16-bit signed integers.
Best for realtime processing targetted at audio.output.

• MMFC AUDIO INT32 - very high quality, but slow processing. 32-bit signed integers.
May be useful for non-realtime processing. Note that some filters may not support it.

• MMFC AUDIO FLOAT32 - some compromise between the two above. Samples are
single precision IEEE 754 floats with range normalized to <-1.0, +1.0>. Using floats
makes avoiding internal overflow easier, but rounding errors may be dangerous.

3.2.2.2 Video common formats

Video common format is just an rectangular array of pixels. Row scan order is top-to-bottom,
line scan order is left-to-right. Lines are not padded in any case. There is only one pixelfor-
mat defined currently:

• MMFC VIDEO ARGB32 - every pixel takes 4 bytes, 8 bits per component, 8 bits for
not premultiplied alpha channel. Pixel components order is [A, R, G, B].

72

3.3 Tutorials

This section contains Reggae programming tutorials with example code.

3.3.1 General

3.3.1.1 Accessing Reggae in applications

Reggae is operated from application with two APIs. One of them is generic object oriented
BOOPSI API with its DoMethod(), GetAttr(), SetAttrs() etc. The second API is just a shared
MorphOS library one, provided by multimedia.class and is, of course, Reggae specific. To
use Reggae one must open multimedia.class as every shared library. For BOOPSI API in-
tuition.library must be opened, which almost all programs do anyway.

Opening and closing multimedia.class
The first step is to add needed includes:

1 #include <proto/multimedia.h>
2 #include <proto/exec.h>
3 #include <proto/intuition.h>
4 #include <clib/alib_protos.h>

The first file contains definition of multimedia.class library API.
It also includes <classes/multimedia/multimedia.h >, containing Reggae structures, con-
stants, tags and macros. The rest of includes are not Reggae specific, in fact most projects
include them anyway, as they define basic system services. There are also additional Reg-
gae headers, their including depends on application and will be covered in further tutorials.
Now we are ready for Reggae initialization. All what has to be done is opening multime-
dia.class just like an ordinary MorphOS shared library. The only noticeable difference is that
library name contains path part, as Reggae classes are not directly on library search path:

1 struct Library* MultimediaBase;
2

3 if (MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52))
4 {
5 /* Now Reggae is ready to use until the library is closed. */
6 CloseLibrary(MultimediaBase);
7 }

As with every library, the name of the base is important, as it is implicitly used in all calls to
the library API as a hidden parameter. Note also the usual error handling, multimedia.class
is disk-based and also performs some disk activity at startup, then checking the library base
against NULL is recommended. 52 is the current multimedia.class version. Applications
should request this version, as previous ones have some important features missing. Reg-
gae cleanup is done with classic CloseLibrary() call.

Note: Some programmers use automatic library opening and closing by linking with libauto.
multimedia.class can be added to the list of automatically opened libraries, but it is not
added by default.

73

A complete example code shows Reggae initialization. The example opens multimedia.class
and, if it succeeded, prints the version and revision of multimedia.class to the console:

1 /*===*/
2 /* Reggae example: opens Reggae and prints its version to the console. */
3 /* by Grzegorz Kraszewski 2009 */
4 /* compile with: gcc -noixemul -o tutorial_basic tutorial_basic.c */
5 /*===*/
6 #include <proto/exec.h>
7 #include <proto/dos.h>
8 #include <proto/multimedia.h>
9

10 struct Library *MultimediaBase;
11

12 int main(void) {
13 if (MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)) {
14 Printf("Reggae opened, version %ld.%ld.\n",
15 MultimediaBase->lib_Version, %% MultimediaBase->lib_Revision);
16 CloseLibrary(MultimediaBase);
17 } else
18 PutStr("Reggae failed to open.\n");
19

20 return 0;
21 }

Opening and closing individual classes

Typical Reggae usage is just calling MediaNewObject() to get a data stream recognized,
demultiplexed and decoded down to common formats automatically. In this case Reggae
opens (and later closes) all needed classes automatically. Things change, when application
builds processing chain by hand, or just uses single components. Then every used class
must be opened and closed explicitly. It is done in the same way as with multimedia.class.
Let’s assume our application uses just http.stream object to download some data from the
net. Before object creation class must be opened. It is typically done in application setup
code:

1 struct Library *HttpStreamBase;
2

3 HttpStreamBase = OpenLibrary("multimedia/http.stream", 51);

As for every disk based library, checking the base against NULL is highly recommended.
The class must be unloaded after use, for example in application cleanup:

1 CloseLibrary(HttpStreamBase);

Reggae classes are handled just like ordinary shared libraries. Note that ”multimedia/” path
is added to the class name, reason for this has been explained above. When a class is
not used constantly in application, it may be a good idea to open it just before it is needed
and close right after it is not needed anymore. For example if http.stream is used only
for automatic application updates, there is no need to keep it opened after update check-
ing/downloading. The last remark concerns names of library bases for classes. No Reggae

74

class except of multimedia.class has library-style API. Because of this library base name
is not used for anything else than opening and closing the clas. That is why, the name is not
important and can be anything. In these tutorials, bases names derived from classes names
are used, just for improved code readability.

I don’t like C/C++, what now?

Reggae can be used from any programming language. It has to fulfill some minimal set
of features however. The first one is ability to call functions from standard MorphOS shared
libraries, intuition.library and exec.library at least. Then ability to call functions from multime-
dia.class. Many programming languages used on MorphOS have tools for creating bindings
(or stubs, or whatever it is called) to shared libraries, based on C headers and *.fd files.
Creating bindings for multimedia.class should not be difficult then. Then the language must
have DoMethod() call. For C/C++ this call is provided by libabox, a static library. Another
important feature is ability to handle tag-based functions in some sane way. Taglist can be
always built by hand, but passing tags as arguments to variable args functions is convenient.

3.3.1.2 Downloading web resources with http.stream - basics

Introduction

The http.stream class is one of Reggae stream classes, in other words data sources. In
a chain of Reggae objects, a http.stream instance will be always the first object, having only
one, output port. A http.stream object may be also used standalone, not connected to any-
thing, just to retrieve any data resource reachable via HTTP protocol and particularly its GET
and POST requests. From this point of view, http.stream is just embeddable HTTP/1.1 client
with simple yet powerful API. A brief list of its features is given below:

• Socket API encapsulation. http.stream completely isolates application (and its pro-
grammer) from bsdsocket.library and TCP/IP stack. Only very basic knowledge of
TCP/IP is needed to use http.stream with success.

• Unlike bsdsocket.library base instances, http.stream objects may be shared between
processes (with the only exception that object must be disposed by proces which cre-
ated it).

• The class has builtin parser of HTTP response headers.

• The class has also an easy to use HTTP request header builder, so custom fields may
be added to the header.

• HTTP proxies are supported.

• The class supports chunked transfer and media streaming over HTTP.

• Optional user agent spoofing is possible.

• When connecting, HTTP redirections may be followed automatically.

• The class is able to handle streams longer than 4 GB.

• Easy protocol debugging via MediaLogger.

75

The class has some disadvantages however. Some of them may be removed in future
versions:

• No support for persistent connections.

• No support for HTTP compression.

• Making connection, sending request and receiving response header is done in the
constructor, so it is synchronous to the application. Any network delay in constructor
blocks the application until timeout or other error is reached. It can be worked around
by putting all the network operation on a subprocess.

Minimal example

When we skip any error handling, the whole process of downloading data via HTTP pro-
tocol reduces to three lines of code:

1 #define DATA_LENGTH 7465 /* just example value */
2

3 UBYTE buffer[DATA_LENGTH]; /* place for data */
4 Object *http;
5

6 http = NewObject(NULL, "http.stream", MMA_StreamName,
7 "www.morphzone.org", TAG_END);
8 DoMethod(http, MMM_Pull, 0, buffer, DATA_LENGTH);
9 DisposeObject(http);

We assume here, http.stream class has been loaded previously with OpenLibrary() (see
“Opening and closing individual classes”). The code will download first 7465 bytes of Mor-
phZone main page (HTML code), assuming there will be no error. This assumption is rather
risky, because a network operation can fail for numerous reasons. Then we will be calling
method on the NULL pointer and disposing NULL later, which can even lead to application
crash. For this reason http.stream offers a few ways for handling errors. They will be dis-
cussed later, for now a minimal error handling is checking NewObject() result against NULL.
This is used in a simple example downloading the first 1000 bytes of a resource specified
in the commandline and dumping them into the console. Note that using this program for
binary resources (like images) may result in rather weird output... I recommend running this
example along with MediaLogger, to learn http.stream protocol debugging features. Exam-
ple:

1 /*--*/
2 /* Basic example of http.stream Reggae class usage. */
3 /* It downloads the first 1000 bytes of web resource given in commandline */
4 /* and dumps them into the console. */
5 /* Written by Grzegorz Kraszewski in 2010. Public domain. */
6 /*--*/
7 #define __NOLIBBASE__
8 #include <proto/exec.h>
9 #include <proto/dos.h>

10 #include <proto/intuition.h>
11 #include <proto/multimedia.h>
12

76

13 UBYTE Buffer[1000]; /* place for data */
14

15 STRPTR ArgTemplate = "URL/A"; /* for ReadArgs() */
16

17 extern struct Library *SysBase, *DOSBase;
18 struct Library *IntuitionBase, *MultimediaBase, *HttpStreamBase;
19

20 LONG Download(STRPTR url) {
21 Object * http;
22 LONG result = RETURN_OK;
23

24 if (http = NewObject(NULL, "http.stream", MMA_StreamName, (LONG) url,
25 TAG_END)) {
26 LONG data_len;
27

28 data_len = DoMethod(http, MMM_Pull, 0, (LONG) Buffer, 1000);
29

30 if (data_len) {
31 Write(Output(), Buffer, data_len);
32 PutStr("\n\n");
33 } else
34 PutStr("No data received.\n");
35

36 DisposeObject(http);
37 } else {
38 PutStr("Some network (?) error occured.\n");
39 result = RETURN_ERROR;
40 }
41 return result;
42 }
43

44 BOOL AppSetup(void) {
45 if (!(IntuitionBase = OpenLibrary("intuition.library", 50)))
46 return FALSE;
47 if (!(MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)))
48 return FALSE;
49 if (!(HttpStreamBase = OpenLibrary("multimedia/http.stream", 51)))
50 return FALSE;
51 return TRUE;
52 }
53

54 void AppCleanup(void) {
55 if (HttpStreamBase)
56 CloseLibrary(HttpStreamBase);
57 if (MultimediaBase)
58 CloseLibrary(MultimediaBase);
59 if (IntuitionBase)
60 CloseLibrary(IntuitionBase);
61 }
62

63 int main(void) {
64 int result = RETURN_OK;
65 struct RDArgs *args;
66 LONG params[1];
67

68 if (AppSetup()) {
69 if (args = ReadArgs(ArgTemplate, params, NULL)) {
70 STRPTR url = (STRPTR) params[0];
71

72 if (strncmp(url, "http://", 7) == 0)
73 url += 7;

77

74

75 result = Download(url);
76 } else
77 result = RETURN_ERROR;
78 } else
79 result = RETURN_FAIL;
80

81 AppCleanup();
82 return result;
83 }

Length of data

Usefulness of the above example is limited. It downloads only predefined amount of data (or
less, if the resource turns out to be shorter). Usually we want to download all the data and
this implies getting the length of it somehow. A few scenarios are possible:

The length of data is known before downloading

This is the easiest, but the most rare case. It can be handled exactly as in the example
from the previous section – a statically sized buffer and single MMM Pull() call.

The server sends a static file

Then it knows the size and passes it in the response header (Content-Length field). The
http.stream object extracts it automatically. Then data length may be obtained by getting
MMA StreamLength attribute. It means that the length is known before data downloading,
so a buffer may be allocated dynamically. The attribute is 64-bit, so it should be get as
follows:

1 QUAD length;
2 length = MediaGetPort64(http, 0, MMA_StreamLength);

This example shows MMA StreamLength usage. It creates the object, asks of the data
length, allocates a buffer, downloads data to the buffer and finally stores the buffer in a file:

1 /*--*/
2 /* An example of http.stream Reggae class usage. */
3 /* It downloads the whole HTTP resource, getting its length by */
4 /* MMA_StreamLength attribute. It fails in case of 0 length (which means */
5 /* chunked transfer usually). Downloaded resource is stored in a file */
6 /* given as the second argument. */
7 /* */
8 /* Written by Grzegorz Kraszewski in 2010. Public domain. */
9 /*--*/

10 #define __NOLIBBASE__
11 #include <proto/exec.h>
12 #include <proto/dos.h>
13 #include <proto/intuition.h>
14 #include <proto/multimedia.h>
15

16 STRPTR ArgTemplate = "URL/A,FILE/A"; /* for ReadArgs() */
17

78

18 extern struct Library *SysBase, *DOSBase;
19 struct Library *IntuitionBase, *MultimediaBase, *HttpStreamBase;
20

21 /* Indexes of arguments in the table filled by ReadArgs(). */
22

23 #define ARG_URL 0
24 #define ARG_FILE 1
25

26 LONG Download(STRPTR url, STRPTR file) {
27 Object *http;
28 LONG result = RETURN_OK;
29

30 if (http = NewObject(NULL, "http.stream", MMA_StreamName, (LONG) url,
31 TAG_END)) {
32 QUAD total_bytes;
33 LONG downloaded_bytes;
34 BPTR destination;
35

36 if ((total_bytes = MediaGetPort64(http, 0, MMA_StreamLength)) > 0) {
37 UBYTE *buffer;
38 /*--*/
39 /* Note the way of passing 64-bit numbers to Printf(). They have */
40 /* to be splitted into two 32-bit parts. */
41 /*--*/
42

43 Printf("Downloading %Ld bytes...\n", (LONG)(total_bytes >> 32),
44 (LONG)(total_bytes & 0xFFFFFFFF));
45

46 /*--*/
47 /* Now the buffer is being allocated dynamically. Because data */
48 /* length is 64-bit, we have to be sure it is not higher than */
49 /* 2ˆ31-1 before passing it to AllocMem() and later MMM_Pull(). */
50 /*--*/
51

52 if ((total_bytes < 2147483648LL)
53 && (buffer = AllocVec((LONG) total_bytes, MEMF_ANY))) {
54 downloaded_bytes = DoMethod(http, MMM_Pull, 0, buffer,
55 (LONG) total_bytes);
56 Printf("Finished. %ld bytes downloaded, saving...\n",
57 downloaded_bytes);
58

59 if (destination = Open(file, MODE_NEWFILE)) {
60 if (FWrite(destination, buffer, downloaded_bytes, 1) == 1) {
61 Printf("%ld bytes saved to \"%s\".\n", downloaded_bytes,
62 file);
63 } else {
64 PrintFault(IoErr(), file);
65 result = RETURN_ERROR;
66 }
67 Close(destination);
68 } else {
69 PrintFault(IoErr(), file);
70 result = RETURN_ERROR;
71 }
72 FreeVec(buffer);
73 } else {
74 PutStr("No memory for data.\n");
75 result = RETURN_FAIL;
76 }
77 } else {
78 PutStr ("HTTP data size is unknown.

79

79 The server uses chunked transfer probably.\n");
80 result = RETURN_ERROR;
81 }
82 DisposeObject(http);
83 } else {
84 PutStr("Some network (?) error occured.\n");
85 result = RETURN_ERROR;
86 }
87 return result;
88 }
89

90 BOOL AppSetup(void) {
91 if (!(IntuitionBase = OpenLibrary("intuition.library", 50)))
92 return FALSE;
93 if (!(MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)))
94 return FALSE;
95 if (!(HttpStreamBase = OpenLibrary("multimedia/http.stream", 51)))
96 return FALSE;
97 return TRUE;
98 }
99

100 void AppCleanup(void) {
101 if (HttpStreamBase)
102 CloseLibrary(HttpStreamBase);
103 if (MultimediaBase)
104 CloseLibrary(MultimediaBase);
105 if (IntuitionBase)
106 CloseLibrary(IntuitionBase);
107 }
108

109 int main(void) {
110 int result = RETURN_OK;
111 struct RDArgs *args;
112 LONG params[2];
113

114 if (AppSetup()) {
115 if (args = ReadArgs(ArgTemplate, params, NULL)) {
116 STRPTR url = (STRPTR) params[ARG_URL];
117 STRPTR file = (STRPTR) params[ARG_FILE];
118

119 if (strncmp(url, "http://", 7) == 0)
120 url += 7;
121

122 result = Download(url, file);
123 } else
124 result = RETURN_ERROR;
125 } else
126 result = RETURN_FAIL;
127

128 AppCleanup();
129 return result;
130 }

The server sends dynamically generated data

Data are usually generated by some server-side script, written in PHP or other language. In
this case server does not know the length a priori so it switches to HTTP chunked transfer
mode. The http.stream object handles it automatically, and reports 0 as MMA StreamLength,
which means that the length is unknown. The only way to process such data is downloading

80

it in blocks in a loop until the object reports MMERR END OF DATA error code. The loop
code may look like this:

1 LONG chunk, error = 0;
2

3 while (!error)
4 {
5 chunk = DoMethod(http, MMM_Pull, 0, buffer, BUFFER_SIZE);
6

7 /* Do something with ’chunk’ bytes of data in ’buffer’. */
8

9 if (chunk < BUFFER_SIZE)
10 {
11 if (MediaGetPort(http, 0, MMA_ErrorCode) == MMERR_END_OF_DATA))
12 {
13 break; /* downloading finished */
14 }
15 else
16 {
17 error = 1; /* downloading failed */
18 }
19 }
20 }

The same loop, just enhanced with progress and error reporting is used in the complete
example being just a Reggae based, very simple, universal HTTP downloader application.
What may be interesting, it deals properly with data longer than 4 GB, assuming the fiilesys-
tem of destination file is 64-bit.

1 /*--*/
2 /* An example of http.stream Reggae class usage. */
3 /* */
4 /* It demonstrates dynamic downloading using fixed size buffer and */
5 /* downloading loop. This code handles HTTP chunked transfer it may be */
6 /* also used for streamed media. */
7 /* */
8 /* This program will handle files bigger than 4 GB assuming the target */
9 /* filesystem is 64-bit. */

10 /* */
11 /* This code shows also how to deal with 64-bit numbers in dos.library */
12 /* Printf() function and its derivatives like FPrintf(). */
13 /* */
14 /* Usage of the program: http_dynamic [URL] [FILE] */
15 /* */
16 /* Written by Grzegorz Kraszewski in 2010. Public domain. */
17 /*--*/
18 #define __NOLIBBASE__
19 #include <proto/exec.h>
20 #include <proto/dos.h>
21 #include <proto/intuition.h>
22 #include <proto/multimedia.h>
23

24 STRPTR ArgTemplate = "URL/A,FILE/A"; /* for ReadArgs() */
25

26 extern struct Library *SysBase, *DOSBase;
27 struct Library *IntuitionBase, *MultimediaBase, *HttpStreamBase;
28

81

29 #define BUFFER_SIZE 8192
30 UBYTE *Buffer;
31

32 /* Indexes of arguments in the table filled by ReadArgs(). */
33

34 #define ARG_URL 0
35 #define ARG_FILE 1
36

37 LONG DownloadLoop(Object *http, BPTR destination) {
38 QUAD total, done = 0;
39 LONG chunk;
40 LONG error = 0;
41

42 total = MediaGetPort64(http, 0, MMA_StreamLength);
43

44 while (!error) {
45 chunk = DoMethod(http, MMM_Pull, 0, (LONG) Buffer, BUFFER_SIZE);
46

47 if (FWrite(destination, Buffer, chunk, 1) == 1) {
48 done += chunk;
49

50 if (chunk < BUFFER_SIZE) {
51 LONG reggae_error = MediaGetPort(http, 0, MMA_ErrorCode);
52

53 if (reggae_error == MMERR_END_OF_DATA) {
54 Printf("Done %Ld bytes.", (LONG)(done >> 32),
55 (LONG)(done & 0xFFFFFFFF));
56 PutStr(" \n");
57 break;
58 } else {
59 Printf("Failed at byte %Ld.",
60 (LONG)(done >> 32),
61 (LONG)(done &
62 % 0xFFFFFFFF));
63 PutStr(" \n");
64 error = RETURN_ERROR;
65 }
66 } else {
67 Printf("Downloaded %Ld ", (LONG)(done >> 32),
68 (LONG)(done & 0xFFFFFFFF));
69 if (total)
70 Printf("of %Ld ", (LONG)(total >> 32),
71 (LONG)(total & 0xFFFFFFFF));
72 Printf("bytes. \r");
73 }
74 } else {
75 PrintFault(IoErr(), "Writing error");
76 error = RETURN_ERROR;
77 }
78 }
79

80 return error;
81 }
82

83 LONG Download(STRPTR url, STRPTR file) {
84 Object *http;
85 LONG result = RETURN_OK;
86 BPTR destination;
87

88 if (http = NewObject(NULL, "http.stream", MMA_StreamName, (LONG) url,
89 TAG_END)) {

82

90 if (destination = Open(file, MODE_NEWFILE)) {
91 result = DownloadLoop(http, destination);
92 Close(destination);
93 } else {
94 PrintFault(IoErr(), file);
95 result = RETURN_ERROR;
96 }
97

98 DisposeObject(http);
99 } else {

100 PutStr("Some network (?) error occured.\n");
101 result = RETURN_ERROR;
102 }
103

104 return result;
105 }
106

107 BOOL AppSetup(void) {
108 if (!(IntuitionBase = OpenLibrary("intuition.library", 50)))
109 return FALSE;
110 if (!(MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)))
111 return FALSE;
112 if (!(HttpStreamBase = OpenLibrary("multimedia/http.stream", 51)))
113 return FALSE;
114

115 /*--*/
116 /* Memory allocated with AllocTaskPooled() is freed automatically when */
117 /* the process exits. */
118 /*--*/
119

120 if (!(Buffer = AllocTaskPooled(BUFFER_SIZE)))
121 return FALSE;
122 return TRUE;
123 }
124

125 void AppCleanup(void) {
126 if (HttpStreamBase)
127 CloseLibrary(HttpStreamBase);
128 if (MultimediaBase)
129 CloseLibrary(MultimediaBase);
130 if (IntuitionBase)
131 CloseLibrary(IntuitionBase);
132 }
133

134 int main(void) {
135 int result = RETURN_OK;
136 struct RDArgs *args;
137 LONG params[2];
138

139 if (AppSetup()) {
140 if (args = ReadArgs(ArgTemplate, params, NULL)) {
141 STRPTR url = (STRPTR) params[ARG_URL];
142 STRPTR file = (STRPTR) params[ARG_FILE];
143

144 if (strncmp(url, "http://", 7) == 0)
145 url += 7;
146

147 result = Download(url, file);
148 } else
149 result = RETURN_ERROR;
150 } else

83

151 result = RETURN_FAIL;
152

153 AppCleanup();
154 return result;
155 }

It is important that RFC 2616, the HTTP specification, does not specify, that static files
must be served without chunked transfer. On the other hand the server is not forced to use
chunked transfer for dynamically generated contents. Assumption that server will not use
chunks for a file just because the file is static one, may fail. Then, the safe way is to use
download loop always and treat MMA StreamLength as a hint only.

3.3.1.3 Writing Reggae classes

Reggae functionality can be extended by adding classes to it. New classes may be either
public or private.

Private Reggae classes

Private classes are simple. They are statically linked with an application and may be only
used in this single application. A private Reggae class is just a BOOPSI class derived from
multimedia.class and implementing the standard set of Reggae methods. The class is cre-
ated with MakeClass() and later referenced by pointer.

Public Reggae classes

A public Reggae class is more complicated. It is a separate disk based component, which
may be loaded by any application. Public classes use shared library framework, so they are
just a special case of MorphOS shared libraries. The differencies are as follows:

• Public Reggae class has no shared library API, except of standard open, close and
expunge vectors.

• The class creates a named BOOPSI class at first open with MakeClass() and adds it
to the system list with AddClass(). Then the class can be used by multiple applications
(the code is shared) and is referenced by name, similarly to an ordinary shared library.

The following example shows the difference in creating objects of public and private class:

1 Object *pub, *priv;
2

3 priv = NewObject(PrivClassPointer, NULL, /* tags */, TAG_END);
4 pub = NewObject(NULL, "public.class", /* tags */, TAG_END);

Of course a public class has to be opened with OpenLibrary() before use (see 3.3.1.1 open-
ing and closing individual classes) and closed when no longer used.

84

http://www.ietf.org/rfc/rfc2616.txt

3.3.2 Audio

3.3.2.1 Playing a sound from file

Playing a sound file from disk is one of most common media related tasks. Reggae can
perform it with a few lines of code. Using Reggae for audio playback has several advantages:

• Wide range of supported audio formats. A codec is selected and loaded by Reggae
automatically.

• Playback is asynchronous. Reggae offloads decoding and playback to a dedicated pro-
cess. The main application may perform other tasks during playback. It gets informed
when the playback ends.

• Reggae streams audio from disk, so it does not load the whole file to memory. Dou-
blebuffering is fully automatic.

• Audio is played through selected unit of AHI. Multiple sounds (up to 32, depending on
user settings of AHI) may be played simultaneously.

Playing audio directly from disk is best suited for long sounds without low latency require-
ments. A typical example is music player or playing background music in the game.
From Reggae point of view, the task of playing audio from disk can be divided in two major
parts. The first one is to get raw audio samples out of encoded file. The second task is to
feed audio data to the output.

Opening a sound file

This part of the job is highly automated. Reggae recognizes the file format and builds com-
plete decoding pipeline for the file with a single function call. The result is returned to the
application as one, opaque object (it may contain many objects inside, but it is irrelevant for
application programmer).

1 Object* media;
2

3 media = MediaNewObject(
4 MMA_StreamType, (ULONG)"file.stream",
5 MMA_StreamName, (ULONG)"RAM:sound",
6 MMA_MediaType, MMT_SOUND,
7 TAG_END);

This single call creates a complete decoding infrastructure for a specified file. Data source is
specified by two tags, MMA StreamName and MMA StreamType. The first one is the name
of the source. In case of files it is just path to the file, which may be absolute (as in the
example), relative to the current directory, or relative to program executable location (using
PROGDIR: assign). MMA StreamType is used to specify which Reggae stream class (or
”transport”) should be used. Of course file.stream is for disk based files (and other things
recognized by DOS as filesystems).
The last tag is a kind of filter. If Reggae recognizes the file, but it is not sound, the file will
be rejected, and the function will return NULL. Of course if file is not recognized at all, NULL

85

will be returned as well. Checking the result of MediaNewObject() against NULL is a very
good idea.
In case of success media contains a pointer to Reggae object, having at least one output
data port, port 0.

Creating output

The second step is to add audio output object to the Reggae processing pipeline. Then
one can ”run” the pipeline, which results in playing the file. The output object belongs to
audio.output class. Before an object can be created, the class must be loaded from disk. It
is done by opening the class with OpenLibrary().

1 struct Library* AudioOutputBase;
2

3 AudioOutputBase = OpenLibrary("multimedia/audio.output", 51);

It is worth noting that audio.output has no specific functions in its shared library API (it is
true for all Reggae classes except of the main multimedia.class). Then, the name of variable
holding the library base is completely irrelevant (as the name is never used implicitly), and
may be anything, ”hja76 d62eg” for example. The name used in the example is a bit more
readable however.
After class opening, an instance of the class may be created:

1 Object* play;
2

3 play = NewObject(NULL, "audio.output", TAG_END);

The instance is created with generic NewObject() call. There are no tags for attributes.
The output object will read all sound properties from media object when they are connected
together. I remind again that checking return value here may be a good idea. If objects are
ready, let’s connect them:

1 MediaConnectTagList(media, 0, play, 0, NULL);

Output port 0 of media object is connected with input port 0 of play object. Both the objects
form a complete Reggae processing pipeline. Now we are ready to play sound. The whole
playback control is done by talking to output object.

Making noise

Playback is controlled with three methods: MMM Play(), MMM Stop() and MMM Pause()
performed on the audio.output instance.

• MMM Play() starts playback if object is stopped, is ignored when object is playing.

• MMM Stop() stops playback and rewinds the audio stream to the start (if possible).

• MMM Pause() (available since version 51.14 of audio.output) stops playback, but does
not rewind audio stream. Following MMM Play() will continue from paused position.

86

All the methods are performed immediately, so just:

1 DoMethod(play, MMM_Play);

starts the playback and:

1 DoMethod(play, MMM_Stop);

stops it at any time. All methods are asynchronous to the caller and return immediately.
Even if MMM Play() setup time is long (because of prebuffering for example), calling pro-
cess is not stopped because setup is done by audio.output process.

Waiting for end of sound

Because audio.output plays the sound asynchronously, there must be a way to inform the
main process about sound end. By ”sound end” I mean either actual audio stream end, or
calling MMM Stop(). Then the application programmer need not to write separate code for
handling natural and forced playback stop.
The class offers two methods for signalling sound end event, namely audio process can send
a signal or can reply a message. Application specifies method choosen and its parameters
by performing one of the two methods described below on audio.output object. Methods are
usually called before the playback is started, but may be also called when object is already
playing. The later solution is tricky however, as the sound may be very short, so a method
may be called after the sound end. In this case signalling requests will be never triggered.

MMM SignalAtEnd() method should be used, when we want to receive a signal to be Wait()-
ed. It has two parameters, pointer to process to be signalled and signal number (not mask!)
to be sent. We usually want to be signalled ourselves, but it is not a requirement, so process
A can start playback, but signal may be received by process B. A typical usage may look like
this:

1 DoMethod(play, MMM_SignalAtEnd, FindTask(NULL), SIGBREAKB_CTRL_C);
2 DoMethod(play, MMM_Play);
3 Wait(SIGBREAKF_CTRL_C);

In this code we send a request to be signalled themselves with system CTRL-C signal. It can
be of course allocated private signal. Note that MMM SignalAtEnd() method expect signal
number while following Wait() needs a signal mask.

1 /*---*/
2 /* Reggae example: playing audio file from disk, end of sound is signalled */
3 /* with a system signal. File name is read from the commandline. */
4 /* */
5 /* This example has only very basic error handling without user feedback. */
6 /* This is done for code simplicity. Reggae problems may be traced with */
7 /* MediaLogger tool. */
8 /* --*/
9 #define __NOLIBBASE__

87

10 #define USE_INLINE_STDARG
11

12 #include <proto/exec.h>
13 #include <proto/dos.h>
14 #include <proto/intuition.h>
15 #include <proto/multimedia.h>
16 #include <classes/multimedia/sound.h>
17

18 extern struct Library *SysBase, *DOSBase;
19 struct Library *IntuitionBase, *MultimediaBase, *AudioOutputBase;
20 CONST_STRPTR Template = "FILE/A";
21

22 BOOL init_resources(VOID) {
23 if (!(IntuitionBase = OpenLibrary("intuition.library", 50)))
24 return FALSE;
25 if (!(MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)))
26 return FALSE;
27 if (!(AudioOutputBase = OpenLibrary("multimedia/audio.output", 51)))
28 return FALSE;
29 return TRUE;
30 }
31

32 VOID free_resources(VOID) {
33 if (AudioOutputBase)
34 CloseLibrary(AudioOutputBase);
35 if (MultimediaBase)
36 CloseLibrary(MultimediaBase);
37 if (IntuitionBase)
38 CloseLibrary(IntuitionBase);
39 }
40

41 STRPTR read_args(VOID) {
42 struct RDArgs *args;
43 LONG params[1];
44 STRPTR filename = NULL;
45

46 if (args = ReadArgs(Template, params, NULL)) {
47 if (filename = AllocVecTaskPooled(strlen((STRPTR) params[0]) + 1)) {
48 strcpy(filename, (STRPTR) params[0]);
49 }
50

51 FreeArgs(args);
52 }
53

54 return filename;
55 }
56

57 VOID play_sound(STRPTR filename) {
58 Object *source, *player;
59

60 if (source = MediaNewObjectTags(MMA_StreamName, (LONG) filename,
61 MMA_StreamType, (LONG) "file.stream", MMA_MediaType, MMT_SOUND,
62 TAG_END)) {
63 if (player = NewObject(NULL, "audio.output", TAG_END)) {
64 if (MediaConnectTagList(source, 0, player, 0, NULL)) {
65 /*---*/
66 /* System CTRL-C signal is used. This way the same code will */
67 /* handle both sound stream end, and user break by pressing */
68 /* CTRL+C in the console window (or sending this signal from */
69 /* TaskManager). */
70 /*---*/

88

71

72 DoMethod(player, MMM_Sound_SignalAtEnd, (LONG) FindTask(NULL),
73 SIGBREAKB_CTRL_C);
74 DoMethod(player, MMM_Play);
75 Wait(SIGBREAKF_CTRL_C);
76 }
77

78 DisposeObject(player);
79 }
80

81 DisposeObject(source);
82 } else
83 Printf("Reggae was unable to decode \"%s\".\n", (LONG) filename);
84 }
85

86 int main(void) {
87 int result = RETURN_OK;
88 STRPTR filename;
89

90 if (init_resources()) {
91 if (filename = read_args()) {
92 play_sound(filename);
93 FreeVecTaskPooled(filename);
94 } else
95 result = RETURN_ERROR;
96 } else
97 result = RETURN_FAIL;
98

99 free_resources();
100

101 return result;
102 }

MMM ReplyMsgAtEnd() signals the end of sound by sending a system message prepared
by application to some message port set up by application as well. This method is useful
especially when an application uses multiple sounds at once. Number of signals available to
a process is very limited. Number of created messages is limited only by available memory.
The method is also useful if application creates message port for other purposes. Then
audio end messages can be directed to this port and distinguished by message contents.
Typical usage looks as follows:

1 struct MsgPort *port; /* created elsewhere */
2 struct Message *msg; /* allocated elsewhere */
3

4 msg->mn_Node.ln_Type = NT_MESSAGE;
5 msg->mn_Length = sizeof(struct Message);
6 msg->mn_ReplyPort = port;
7

8 DoMethod(play, MMM_Sound_ReplyMsgAtEnd, msg);
9 DoMethod(play, MMM_Play);

10 WaitPort(port);
11 GetMsg(port);

The main difference between these two methods is that message signalling is ”one-shot”.
After the message is sent to application’s port, it must be got from the port and reinitialized
before it can be reused again. Signal method may be used repeatedly, which is comfortable
when a short sound is triggered multiple times.

89

1 /*---*/
2 /* Reggae example: playing audio file from disk, end of sound is signalled */
3 /* with a message reply. File name is read from the commandline. */
4 /* */
5 /* This example has only very basic error handling without user feedback. */
6 /* This is done for code simplicity. Reggae problems may be traced with */
7 /* MediaLogger tool. */
8 /* --*/
9 #define __NOLIBBASE__

10 #define USE_INLINE_STDARG
11

12 #include <proto/exec.h>
13 #include <proto/dos.h>
14 #include <proto/intuition.h>
15 #include <proto/multimedia.h>
16 #include <exec/memory.h>
17 #include <classes/multimedia/sound.h>
18

19 extern struct Library *SysBase, *DOSBase;
20 struct Library *IntuitionBase, *MultimediaBase, *AudioOutputBase;
21 CONST_STRPTR Template = "FILE/A";
22

23 BOOL init_resources(VOID) {
24 if (!(IntuitionBase = OpenLibrary("intuition.library", 50)))
25 return FALSE;
26 if (!(MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)))
27 return FALSE;
28 if (!(AudioOutputBase = OpenLibrary("multimedia/audio.output", 51)))
29 return FALSE;
30 return TRUE;
31 }
32

33 VOID free_resources(VOID) {
34 if (AudioOutputBase)
35 CloseLibrary(AudioOutputBase);
36 if (MultimediaBase)
37 CloseLibrary(MultimediaBase);
38 if (IntuitionBase)
39 CloseLibrary(IntuitionBase);
40 }
41

42 STRPTR read_args(VOID) {
43 struct RDArgs *args;
44 LONG params[1];
45 STRPTR filename = NULL;
46

47 if (args = ReadArgs(Template, params, NULL)) {
48 if (filename = AllocVecTaskPooled(strlen((STRPTR) params[0]) + 1)) {
49 strcpy(filename, (STRPTR) params[0]);
50 }
51 FreeArgs(args);
52 }
53 return filename;
54 }
55

56 VOID play_sound(STRPTR filename) {
57 Object *source, *player;
58 struct MsgPort *port;
59 struct Message *msg;
60

90

61 if (port = CreateMsgPort()) {
62 if (msg = AllocVec(sizeof(struct Message),
63 MEMF_PUBLIC | MEMF_CLEAR)) {
64 msg->mn_Node.ln_Type = NT_MESSAGE;
65 msg->mn_ReplyPort = port;
66 msg->mn_Length = sizeof(struct Message);
67

68 if (source = MediaNewObjectTags(MMA_StreamName, (LONG) filename,
69 MMA_StreamType, (LONG) "file.stream", MMA_MediaType,
70 MMT_SOUND, TAG_END)) {
71 if (player = NewObject(NULL, "audio.output", TAG_END)) {
72 if (MediaConnectTagList(source, 0, player, 0, NULL)) {
73 ULONG signals, sigmask = 1 << port->mp_SigBit;
74

75 /*---*/
76 /* I want to wait both for message reply (end of sound) and */
77 /* CTRL-C signal (user break). That is why I calculate */
78 /* signal mask and use Wait() instead of WaitPort(). */
79 /*---*/
80

81 DoMethod(player, MMM_Sound_ReplyMsgAtEnd, (LONG) msg);
82 DoMethod(player, MMM_Play);
83 signals = Wait(SIGBREAKF_CTRL_C | sigmask);
84

85 if (signals & SIGBREAKF_CTRL_C)
86 PutStr("User break!\n");
87

88 if (signals & sigmask) {
89 GetMsg(port); // empty port queue
90 PutStr("End of sound.\n");
91 }
92 }
93 DisposeObject(player);
94 }
95 DisposeObject(source);
96 } else
97 Printf("Reggae was unable to decode \"%s\".\n",
98 (LONG) filename);
99 FreeVec(msg);

100 }
101 DeleteMsgPort(port);
102 }
103 }
104

105 int main(void) {
106 int result = RETURN_OK;
107 STRPTR filename;
108

109 if (init_resources()) {
110 if (filename = read_args()) {
111 play_sound(filename);
112 FreeVecTaskPooled(filename);
113 } else
114 result = RETURN_ERROR;
115 } else
116 result = RETURN_FAIL;
117 free_resources();
118 return result;
119 }

91

3.3.2.2 Playing a sound from memory

While 3.3.2.1playing a sound from file is the most common way, there are applications where
it has several disadvantages. When a sound is short, played many times and low latency
is required, playing this sound from memory will be better option. Seeking in the sound, or
restarting it will be substantially faster then, as it does not involve any disk activity.
On the other hand playing from memory should be used with care. Audio data are very
space consuming usually. Five seconds audio effect stored as PCM in audio CD quality
takes 861 kB of memory. A solution for this problem is to use compressed formats and let
Reggae decompress it on the fly.
There are two ways of placing audio file in memory. Firstly, it can be loaded from disk. Sec-
ondly the audio file contents may be embedded into the executable file.

Buffering sound file from disk

In this method sounds are stored as files separated from application executable. Mem-
ory buffers for sounds are allocated dynamically. This approach allows for easy changing
of sounds or – for example – delivering low quality versions for machines having less mem-
ory, or even running without sound, when memory is low. The code and error handling is a
bit more complicated however. The process of sound buffering does not involve Reggae at
all. File is opened and sized, then buffer is allocated, file is read into it and closes. These
tasks may be performed by native dos.library calls (Open(), Read(), Close()), or C standard
library calls (fopen(), fread(), fclose()). As the later ones are just wrappers on native calls,
using native ones is recommended, unless code portability is important. The following code
buffers a file in memory with minimal error checking:

1 BPTR handle;
2 LONG size;
3 APTR buffer;
4 struct FileInfoBlock *fib;
5

6 if (fib = AllocDosObject(DOS_FIB, NULL))
7 {
8 if (handle = Open("PROGDIR:sounds/anysound.wav", MODE_OLDFILE))
9 {

10 if (ExamineFH(handle, fib))
11 {
12 size = fib->fib_Size;
13

14 if (buffer = AllocVecTaskPooled(size))
15 {
16 if (Read(handle, buffer, size) == size)
17 {
18 /* use buffer as memory.stream data here */
19 }
20 FreeVecTaskPooled(buffer);
21 }
22 }
23 Close(handle);
24 }
25 FreeDosObject(DOS_FIB, fib);
26 }

Programmers new to MorphOS may notice some new things in the code above. While not
related to Reggae, they are worth some explanation. The first one is PROGDIR: assign

92

(or link in Unix nomenclature). It just means the directory, where running executable file is
located. It is then an easy way to refer to application data with relative paths. When user
moves the application directory somewhere, paths using PROGDIR: are still valid.
The second thing is AllocVecTaskPooled() call. Every MorphOS process has an automati-
cally assigned memory pool, which is disposed when process ends. Using this pool for allo-
cations, an application need not track them, as all memory not freed explicitly with FreeVec-
TaskPooled() will be freed when memory pool is disposed.

Embedding sound in application executable

Embedding sound in the code has the advantage of simplicity. The application is more
self-contained. There are no disk operations involved, so there is no need for error handling
code. On the other hand it can make executable very big, and there is no chance for user to
change sounds. Audio file of any fomat can be converted to C code (as a large table) with
BinToC tool. Generated source is added to the project and compiled. Then address of the
table (denoted in C just as the table name) and its length in bytes, are passed as parameters
to memory.stream object (see code fragment below).

Memory stream as data source

Reggae uses the memory.stream class to access data located in system memory. Its usage
is similar to file.stream, there are some differencies however. The first one is stream name.
For memory.stream it is a string containing stream address as a hexadecimal number, like
for example ”2749FA0C”. MMA StreamName attribute is not used often however. One usu-
ally has the address just as number, not as text. Converting it to text just to make Reggae
to convert it back to number makes not much sense. Then MMA StreamHandle attribute
comes with help. Its value is just the address of stream, passed as number. Another very
important attribute is MMA StreamLength. Memory based streams have no ”natural” end.
When one is reading a file, DOS just reports EOF (end of file) condition, when the file ends.
In memory one can read endlessly, until he hits the end of physical memory space. That is
why MMA StreamLenght is a required attribute for memory streams. Reggae will refuse to
create a stream object, if the attribute is not specified. Note also that the attribute in general
is 64-bit one, and takes a pointer to 64-bit number. Passing just a 32-bit number as the
value is a common mistake here. Code snippet below shows typical creation of memory
stream object from a sound embedded in executable file:

1 /* The length is just example. */
2 CONST UBYTE SoundData [12837] = { /* audio data here */ };
3 QUAD length = 12837;
4 Object *sound;
5

6 sound = MediaNewObject(
7 MMA_StreamType, "memory.stream",
8 MMA_StreamHandle, SoundData,
9 MMA_StreamLength, &length,

10 TAG_END);

When sound is buffered from file, one has to check the file size first, then allocate a buffer
and load the file into it using usual dos.library calls, or C standard library calls. The process
is shown in the complete example source code. After the buffer is loaded, memory.stream
object is created the same way as above.

93

http://morphos-files.net/download/BinToC

1 /*---*/
2 /* Reggae example: loads a sound to memory buffer, then plays it at every */
3 /* keypress. Demonstrates usage of memory.stream for low playback latency. */
4 /* To have real fun load some short sample like gun shot. */
5 /* */
6 /* Every [ENTER] stops the sample (to rewind it to the start) and plays it */
7 /* again. Even if sample ends before keypress, stopping it is harmless. */
8 /* */
9 /* This example has only very basic error handling without user feedback. */

10 /* This is done for code simplicity. Reggae problems may be traced with */
11 /* MediaLogger tool. */
12 /* --*/
13 #define __NOLIBBASE__
14 #define USE_INLINE_STDARG
15

16 #include <proto/exec.h>
17 #include <proto/dos.h>
18 #include <proto/intuition.h>
19 #include <proto/multimedia.h>
20 #include <classes/multimedia/sound.h>
21

22 extern struct Library *SysBase, *DOSBase;
23 struct Library *IntuitionBase, *MultimediaBase, *AudioOutputBase;
24 CONST_STRPTR Template = "FILE/A";
25

26 struct BufInfo {
27 APTR buffer;
28 LONG size;
29 };
30

31 BOOL init_resources(VOID) {
32 if (!(IntuitionBase = OpenLibrary("intuition.library", 50)))
33 return FALSE;
34 if (!(MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)))
35 return FALSE;
36 if (!(AudioOutputBase = OpenLibrary("multimedia/audio.output", 51)))
37 return FALSE;
38 return TRUE;
39 }
40

41 VOID free_resources(VOID) {
42 if (AudioOutputBase)
43 CloseLibrary(AudioOutputBase);
44 if (MultimediaBase)
45 CloseLibrary(MultimediaBase);
46 if (IntuitionBase)
47 CloseLibrary(IntuitionBase);
48 }
49

50 STRPTR read_args(VOID) {
51 struct RDArgs *args;
52 LONG params[1];
53 STRPTR filename = NULL;
54

55 if (args = ReadArgs(Template, params, NULL)) {
56 if (filename = AllocVecTaskPooled(strlen((STRPTR) params[0]) + 1)) {
57 strcpy(filename, (STRPTR) params[0]);
58 }
59

60 FreeArgs(args);

94

61 }
62

63 return filename;
64 }
65

66 BOOL load_sound(STRPTR filename, struct BufInfo *binf) {
67 BPTR file;
68 LONG size;
69 struct FileInfoBlock *fib;
70 BOOL result = FALSE;
71

72 SetIoErr(0);
73 binf->buffer = NULL;
74

75 if (fib = AllocDosObject(DOS_FIB, NULL)) {
76 if (file = Open(filename, MODE_OLDFILE)) {
77 if (ExamineFH(file, fib)) {
78 binf->size = fib->fib_Size;
79

80 if (binf->buffer = AllocTaskPooled(binf->size)) {
81 if (Read(file, binf->buffer, binf->size) == binf->size)
82 result = TRUE;
83 else {
84 FreeTaskPooled(binf->buffer, binf->size);
85 result = FALSE;
86 PrintFault(IoErr(), "Loading failed");
87 }
88 }
89 }
90

91 Close(file);
92 } else
93 PrintFault(IoErr(), "Can’t open file");
94

95 FreeDosObject(DOS_FIB, fib);
96 }
97

98 return result;
99 }

100

101 VOID main_loop(struct BufInfo *binf) {
102 Object *source, *player;
103 QUAD stream_length = (QUAD) binf->size;
104

105 if (source = MediaNewObjectTags(MMA_StreamHandle, (LONG) binf->buffer,
106 MMA_StreamType, (LONG) "memory.stream", MMA_StreamLength,
107 (LONG) & stream_length, MMA_MediaType, MMT_SOUND, TAG_END)) {
108 if (player = NewObject(NULL, "audio.output", TAG_END)) {
109 if (MediaConnectTagList(source, 0, player, 0, NULL)) {
110 LONG c;
111

112 for (;;) {
113 c = FGetC(Input());
114 if (c == ’q’)
115 break;
116 else {
117 DoMethod(player, MMM_Stop);
118 DoMethod(player, MMM_Play);
119 }
120 }
121 }

95

122

123 DisposeObject(player);
124 }
125

126 DisposeObject(source);
127 } else
128 PutStr("Reggae was unable to decode buffer.\n");
129 }
130

131 int main(void) {
132 int result = RETURN_OK;
133 STRPTR filename;
134 struct BufInfo binf;
135

136 if (init_resources()) {
137 if (filename = read_args()) {
138 if (load_sound(filename, &binf)) {
139 PutStr("Press [ENTER] to (re)trigger sound."
140 "Press [Q] then [ENTER] to quit.\n");
141 main_loop(&binf);
142 FreeTaskPooled(binf.buffer, binf.size);
143 } else
144 result = RETURN_ERROR;
145

146 FreeVecTaskPooled(filename);
147 } else
148 result = RETURN_ERROR;
149 } else
150 result = RETURN_FAIL;
151

152 free_resources();
153

154 return result;
155 }

Playback and playback control

To play the sound, one connects created media object with an audio.output object, exactly
the same as for playing from disk. There is also no difference in controlling the playback,
or waiting for sound end. Thanks to stream abstraction Reggae ”does not care” what the
stream is. Just seek and retrigger operations are much faster. It is important for short sound
effects retriggered many times (think of a shot sound in a game). The example code linked
above allows user for retriggering the sound pressing ENTER key. It can be done very fast
without delays, assuming some simple audio compression is used (just press and hold EN-
TER, retrigger rate will be as fast as key repetition rate set in system preferences).
The example shows also ”launch and forget” strategy of playing sounds with Reggae. There
is no check for sound end. MMM Stop() just stops and does seek to the start. Then
MMM Play() starts playback. It does not matter if retrigger happens while previous sound
is still playing or not. There is also no sound end check when user stops the program.
Disposing an active (playing) audio.output object is perfectly safe.

3.3.2.3 Playing a continuous, synthesized wave

This tutorial shows how raw sound data may be played with Reggae. The example code
synthesizes a 1 kHz sine wave and plays it continuously. The wave is synthesized into a

96

table in memory. Then memory.stream is used to access it. The next object, an instance
of rawaudio.filter, attaches audio parameters to the raw data. Finally audio.output plays the
wave in a endless loop, using its looping feature.

1 /*---*/
2 /* Reggae example: playing a synthesized, continuous 1 kHz sine wave. */
3 /* Sampling frequency is 44100 Hz. This example shows usage of */
4 /* memory.stream and rawaudio.filter to use raw, synthesized audio data */
5 /* in Reggae. */
6 /* */
7 /* This example has only very basic error handling without user feedback. */
8 /* This is done for code simplicity. Reggae problems may be traced with */
9 /* MediaLogger tool. */

10 /* --*/
11 #define __NOLIBBASE__
12 #define USE_INLINE_STDARG
13

14 #include <proto/exec.h>
15 #include <proto/dos.h>
16 #include <proto/intuition.h>
17 #include <proto/multimedia.h>
18 #include <exec/memory.h>
19 #include <classes/multimedia/sound.h>
20 #include <math.h>
21

22 extern struct Library *SysBase, *DOSBase;
23

24 struct Library *IntuitionBase, *MultimediaBase, *AudioOutputBase,
25 *MemoryStreamBase, *RawAudioFilterBase;
26

27 struct ReggaePipeline {
28 Object *stream;
29 Object *rawaudio;
30 Object *player;
31 };
32

33 /*---*/
34 /* In theory a single looped period of sine is enough to play a continuous */
35 /* wave. Unfortunately one period of 1 kHz sine sampled at 44100 Hz */
36 /* occupies 44.1 sampling periods, which is not integer. Using 10 periods */
37 /* (441 samples) would be enough, but I’ve used 100 periods, to avoid tight*/
38 /* looping, which is CPU consuming. Sample format in the table is 16-bit. */
39 /*---*/
40

41 WORD SineWave[4410];
42

43 VOID wave_generate(VOID) {
44 LONG i;
45

46 for (i = 0; i < 4410; i++)
47 SineWave[i] = sin(100.0 * M_PI * (double) i / 2205.0) * 32767.0;
48 }
49

50 BOOL init_resources(VOID) {
51 if (!(IntuitionBase = OpenLibrary("intuition.library", 50)))
52 return FALSE;
53 if (!(MultimediaBase = OpenLibrary("multimedia/multimedia.class", 52)))
54 return FALSE;
55 if (!(AudioOutputBase = OpenLibrary("multimedia/audio.output", 51)))
56 return FALSE;

97

57 if (!(MemoryStreamBase = OpenLibrary("multimedia/memory.stream", 51)))
58 return FALSE;
59 if (!(RawAudioFilterBase = OpenLibrary("multimedia/rawaudio.filter",
60 51)))
61 return FALSE;
62 return TRUE;
63 }
64

65 VOID free_resources(VOID) {
66 if (RawAudioFilterBase)
67 CloseLibrary(RawAudioFilterBase);
68 if (MemoryStreamBase)
69 CloseLibrary(MemoryStreamBase);
70 if (AudioOutputBase)
71 CloseLibrary(AudioOutputBase);
72 if (MultimediaBase)
73 CloseLibrary(MultimediaBase);
74 if (IntuitionBase)
75 CloseLibrary(IntuitionBase);
76 }
77

78 BOOL build_pipeline(struct ReggaePipeline *rpi) {
79 QUAD stream_length = 8820;
80 // size of the sine table in *bytes*
81

82 rpi->stream = NewObject(NULL, "memory.stream", MMA_StreamHandle,
83 (LONG) SineWave, MMA_StreamLength, (LONG) & stream_length,
84 // pointer to 64-bit value!
85 TAG_END);
86

87 rpi->rawaudio = NewObject(NULL, "rawaudio.filter", MMA_Sound_Channels,
88 1, MMA_Sound_SampleRate, 44100, MMA_Sound_Volume, 65536,
89 // full volume, this is the default, but let’s set it anyway
90 TAG_END);
91

92 rpi->player = NewObject(NULL, "audio.output", TAG_END);
93

94 if (rpi->stream && rpi->rawaudio && rpi->player) {
95 MediaSetPort(rpi->rawaudio, 1, MMA_Port_Format, MMFC_AUDIO_INT16);
96 // default, but let’s set it for clarity
97 MediaConnectTagList(rpi->stream, 0, rpi->rawaudio, 0, NULL);
98 MediaConnectTagList(rpi->rawaudio, 1, rpi->player, 0, NULL);
99 return TRUE;

100 }
101

102 return FALSE;
103 }
104

105 VOID play_sound(struct ReggaePipeline *rpi) {
106 /*--*/
107 /* The sound will be looped, so it never ends. The only way to break it */
108 /* will be to press CTRL+C in the console or to send CTRL-C signal other */
109 /* way. I’m only waiting for this signal then. */
110 /*--*/
111

112 // turn looping on
113 MediaSetPort(rpi->player, 0, MMA_Sound_LoopedPlay, TRUE);
114 DoMethod(rpi->player, MMM_Play);
115 Wait(SIGBREAKF_CTRL_C);
116 }
117

98

118 VOID destroy_pipeline(struct ReggaePipeline *rpi) {
119 DisposeObject(rpi->player);
120 DisposeObject(rpi->rawaudio);
121 DisposeObject(rpi->stream);
122 }
123

124 int main(void) {
125 int result = RETURN_OK;
126

127 if (init_resources()) {
128 struct ReggaePipeline rpi;
129

130 wave_generate();
131 if (build_pipeline(&rpi))
132 play_sound(&rpi);
133 else
134 result = RETURN_FAIL;
135

136 destroy_pipeline(&rpi);
137 } else
138 result = RETURN_FAIL;
139

140 free_resources();
141

142 return result;
143 }

Raw sine wave synthesis

In theory a single period of sine wave is enough to play it continuously. There are two
reasons for using more periods however. The first is number of samples in one period. We
want to play a 1 kHz wave sampled at 44.1 kHz. Then one period would contain 44.1 sam-
ples, which is not integer obviously. The second reason is processing overhead of tight loop.
Every loop turn takes additional processing time, so it is better, when the loop is longer.
Taking both these reasons into account, 100 periods of the sine are generated into the ta-
ble containing 4410 samples, which makes 0.1 second of sound. The generation is then
straightforward and uses sin() function from the standard C math library. As the argument
of sin() is in radians (so one period is 2π), it goes from 0 to 200π in 4410 steps (without the
last value). The amplitude of the sine wave (which is normally 1.0) is scaled to 16-bit signed
range by multiplying by 32767.

Using memory.stream for synthesis buffer

Basic usage of memory.stream has been discussed in 3.3.2.2“Playing a Sound From Mem-
ory” tutorial. MMA StreamHandle attribute is used to pass the memory table address,
MMA StreamLength one takes the table size in bytes (note, it is not the same as the ta-
ble size in the declaration, as every element of the table ocuppies two bytes). Note also,
MMA StreamLength is 64-bit attribute, and as such is passed as a pointer to a QUAD vari-
able containing the value.

Applying audio parameters with rawaudio.filter

While the sine wave generation is done, the memory.stream output cannot be connected
directly to audio.output object. This is because stream classes deliver just plain stream
of bytes with no meaning assigned. In the previous tutorial Reggae was able to play this

99

stream, because it has been self-descripting (contained a header, for example AIFF or WAVE
one). Raw data are not self-descripting, so we have to describe it to Reggae ourselves. A
”conversion” of stream into audio signal is done with rawaudio.filter object. Usage of quotes
is intentional. In fact this class does not convert the data, it just attaches audio format and
attributes to the data stream. Then the stream is recognized by Reggae as audio and may
be further processed, which of course includes playing it with audio.output.
Applying audio information consists of two parts. Audio attributes (number of channels, sam-
ple rate and volume) are set during rawaudio.filter object creation. The samples format is
set by setting it on the output port of created object:

1 Object *rawaudio;
2

3 rawaudio = NewObject(NULL, "rawaudio.filter",
4 MMA_Sound_Channels, 1,
5 MMA_Sound_SampleRate, 44100,
6 MMA_Sound_Volume, 65536,
7 TAG_END);
8

9 MediaSetPort(rawaudio, 1, MMA_Port_Format, MMFC_AUDIO_INT16);

Most of the code above is redundant, as it happens that values set match default values for
rawaudio.filter. Namely default number of channels is 1, default volume is 65536 ($10000 =
full volume) and default sample format is 16-bit integer. Default sampling rate differs how-
ever, as it is 8000 Hz. Anyway all attributes have been set in the example code just for
completness.
One can use any of the three Reggae audio formats for raw data. Except of 16-bit integers,
Reggae handles 32-bit signed integers (MMFC AUDIO INT32) and 32-bit signle precision
floats
(MMFC AUDIO FLOAT32). Using these for playback makes not much sense however, as
data will be converted to 16 bits anyway.

Rawaudio.filter allows also for using all formats supported by audiopcm.decoder and laws.decoder.
It includes PCM 8/16/24/32 bits in both endians (8 bit data may be either signed or unsigned),
32-bit floats in both endians and 8-bit nonlinearly quantized data according to A-law or π-
law. In this case, proper decoder object must be created and connected to the filter output.
This feature may be useful for loading raw data from files created by external applications.
For internally generated data using of Reggae standard formats is recommended (it avoids
additional conversions).

Looping the sound to make it continuous

This is the easy part. Looping feature is built into audio.output class. This feature is con-
trolled with MMA Sound LoopedPlay attribute. When it is set to TRUE, audio.output, after
encounering sound end, seeks to the start of stream and continues playback. Thanks to
doublebuffering, there is no gap in playback, assuming seek is done fast enough (which is
true for memory streams and file streams on local storage media). Then, in case of our
sine wave, looping is seamless. As mentioned above, the loop should not be too short. For
memory streams 0.1 second is enough, for disk based streams 0.5 second would be safe.
The MMA Sound LoopedPlay attribute may be either passed to NewObject() or set later
with SetAttrs(), or MediaSetPort() on audio.output instance input port. The example code
uses the second approach.

100

Chapter 4

Additional

4.1 In-depth: The New MorphOS Memory System

Author: Harry Sintonen
Source: http://library.morphzone.org/Reggae: MorphOS multimedia framework
Originally published at: http://morphos-team.net/tlsf.html

4.1.1 Foreword

Many parts of AmigaOS were designed 25 years ago. At the time system resources were
scarce and processors were relatively slow.
For Exec a simple and in many cases fast memory management algorithm was chosen:
First Fit algorithm. It gives a very fast allocation speed in non-fragmented scenarios. Mem-
ory deallocation isn’t very efficient however. The major problem is memory fragmentation:
First Fit routine will get exponentially slow when fragmentation grows. Over time the frag-
mentation can get so severe that the system is visibly laggy. Finally, First Fit routine itself
causes yet more fragmentation by not returning the best but first fit.
MorphOS inherited the memory management algorithm from AmigaOS. It worked quite well,
but it soon became clear that it had some serious problems. Especially longer sessions
(several days) of using complex applications (for example IBrowse) would easily slow the
system down a lot. So First Fit had to go and something better had to replace it.
I had three design goals in mind when developing the new memory system:

1. It must be compatible with the old one, as much as possible. Legacy applications
should continue to work as before.

2. It should reduce the effects of memory fragmentation.

3. It should reduce memory fragmentation. An as large as possible contiguous memory
block should be available.

4.1.2 Compatibility

The first requirement was clearly the most critical one as MorphOS traditionally wants to
maintain as much compatibility as possible, while introducing new advanced things, too.

101

http://library.morphzone.org/Reggae:_MorphOS_multimedia_framework
http://morphos-team.net/tlsf.htmlk

It also proved to be the most challenging requirement of all to fulfill. AmigaOS-compatible
memory API is cluttered with obscurities such as AllocAbs(), AvailMem() and AddMemList(),
freeing partial memory blocks, the MEMF REVERSE flag and documented memory align-
ment characteristics.
The challenge was to introduce a faster memory system without breaking these functions.
For example there is a common code sequence to obtain aligned memory blocks:

1 void *allocaligned(ULONG size, ULONG flags, ULONG align)
2 {
3 void *ptr = AllocMem(size + align - 1, flags & ˜MEMF_CLEAR);
4 if (ptr)
5 {
6 ULONG alignptr = ((ULONG) ptr + align - 1) & (ULONG) -align;
7 Forbid();
8 FreeMem(ptr, size + align - 1);
9 ptr = AllocAbs(size, (APTR) alignptr);

10 Permit();
11 if (ptr && (flags & MEMF_CLEAR))
12 memset(ptr, 0, size);
13 }
14 return ptr;
15 }

For this to continue to work properly the new system must implement AllocAbs() properly
and adhere to the original alignment specifications.

Another example is a routine which allocates the largest memory block:

1 void *alloclargest(ULONG flags)
2 {
3 ULONG largest;
4 void *ptr;
5 Forbid();
6 largest = AvailMem(flags | MEMF_LARGEST);
7 ptr = AllocMem(largest, flags);
8 Permit();
9 return ptr;

10 }

For this to work the largest memory block returned by AvailMem() must always be available
for allocation as well.
AddMemList() is a somewhat uncommon feature of the memory system. This function can
be used to add memory to the system runtime.
All these are implemented and are functioning correctly in the new memory system.
The new system is even compatible with some rather nasty tricks, such as assuming that
AllocVec() keeps the allocation size at ptr-4. This is often used to implement realloc() like
functionality for AllocVec()ed memory. Supporting this was no problem since it would not
affect any other things adversely.
We clearly understand that code using such tricks is seriously broken, but we also under-
stand that often there is no way to fix these applications, either. So for the end user it is
better to support such ”hacks”, rather than to fail miserably. Developers can use tools such

102

as MungWall to detect these hacks, but the end users should not need to worry about such
things!
In the end only two things had to go:
First, FreeMem() can no longer be used to free partial memory blocks. This feature was a
side effect of FreeMem() internally calling Deallocate(), which in turn is guaranteed to sup-
port partial free. With the new memory system Deallocate() is no longer called. Luckily even
the AmigaOS SDKs have since a long time discouraged partial block FreeMem, so this is no
big problem I believe.
Second, MEMF REVERSE no longer has any effect on the allocation. The flag is quietly
ignored. Frankly I believe that adding such a flag to the memory system was a mistake to
begin with. In MorphOS context it has no application anyway, so I don’t believe the removal
has any adverse effects.

4.1.3 Reducing Effects of Fragmentation

Fragmentation happens, there is no way around it. Over time the memory will fragment. The
trick is to reduce the adverse effect it has on system performance.
The choice of algorithm was critical here. The Two Level Segregated Fit (http://rtportal.upv.es/rtmalloc/)
algorithm provides a guaranteed constant O(1) allocation/deallocation cost regardless of the
memory fragmentation.
This means that regardless of the memory fragmentation allocations and deallocation will
run at the same speed. Even after say 5 years uptime.

4.1.4 Reducing Memory Fragmentation

he choice of algorithm is critical here, as well. For example the original First Fit algorithm
generates a lot of fragmentation over time. To give fast allocation speeds it returns the first
memory block fitting the requirements.
The new algorithm should instead return the best possible memory chunk, making sure that
fragmentation only occurs when absolutely necessary.
The Two Level Segregated Fit algorithm excels here too, giving average fragmentation lower
than 15%.

4.1.5 The Implementation

MorphOS 2.0 and later has a pluggable memory interface. Basically different allocator
schemes can be selected at boot time. For now the possible options are First Fit (same
as in AmigaOS and MorphOS 1.x) and Two Level Segregated Fit (default). The user can
configure the desired memory system by adjusting the MorphOS boot command in Open-
Firmware.

The TLSF algorithm is remarkably simple:
The algorithm uses a segregated fit mechanism to implement a good fit policy. The segre-
gated fit mechanism uses an array of free lists, with each array holding free blocks within
a size class. The classes are powers of two: 16, 32, 64 and so on. For performance and
fragmentation reduction reasons the array has two levels. In the MorphOS implementation

103

http://rtportal.upv.es/rtmalloc/

each list is divided to 32 sub-divisions. This combined with other implementation specifics
allows for a maximum allocation size of 2GB. Each array of lists has a bitmap to mark which
lists are occupied with empty blocks and which are empty (all memory allocated). The free
blocks themselves hold information about the block, similar to the original First Fit routine.
For additional block coalesce performance during the memory deallocation a back pointer to
previous free block is maintained as well.
In order to allocate a memory block the allocation size is split between the two indexes.
These indexes are used to find a free block, which now is an O(1) operation. The found
block is removed from the free list and marked as used. If the free block found is larger than
the allocation size, the block is split. The size of the remaining block is again converted to
two indexes. The new free block is inserted to the correct position indicated by the indexes.
To free memory the block size is obtained from the block header. The block is merged with
the previous and next block, if possible. If merging is possible the other block is marked as
used and removed. The size of the final resulting block is again converted to two indexes.
The new free block is merged as free and inserted into the correct position indicated by the
indexes.
The actual implementation adds a couple of things the original algorithm didn’t have: main-
taining the remaining free size (for AvailMem), possibility to allocate the largest possible free
block and allocating a memory block at an absolute address.

In addition the characteristics of the TLSF allocator give a possibility to automatically de-
tect wrong deallocation sizes passed to the memory freeing routines. This gives extra safety
in form of rejecting obviously illegal calls. For application developers it gives extra debug so
that they can identify and fix the bug early.

The TLSF memory system fills all the design goals: It is very compatible with even the old-
est applications. It maintains good performance regardless of the memory fragmentation. It
reduces memory fragmentation.

4.2 Writing Custom Startup Code

Author: Grzegorz Kraszewski
Source: http://library.morphzone.org/Writing Custom Startup Code

4.2.1 Forword

One can find in every C programming handboook, that program execution starts from main()
function. In fact we have such an impression, when we write a program. There is no evidence
to disprove it. In fact however, this is not true. There are at least a few, and sometimes even
a few teens of kilobytes of code between the start of program execution and the first line of
main(). Most of this code is not really needed in most cases.
What is being done by this code? Let’s say for the start, it is perfectly possible to have
a program without any startup code at all. The system can jump into main() right away.
Unfortunately such a program would run only from commandline window. It would crash,
when started from Ambient. It is because Ambient sends a special message to a message
port of a freshly created process. This message serves two purposes. Firstly, it contains
Ambient launch parameters, namely program icon descriptor and optionally descriptors of

104

http://library.morphzone.org/Writing_Custom_Startup_Code

other icons, which have been shift-clicked, or dropped onto a panel. Secondly, a reply for
the message is a signal for Ambient that the program finished its execution. Sending a reply
is obligatory. This is the minimal set of things to be done by startup code. In practice it also
should open required shared libraries. When one wants to use the C standard library, either
with libnix or ixemul.library, the startup code also creates a ”standard environment” for the
C standard library and POSIX functions (more on this). Because of this, startup code linked
when using one of these libraries is quite complex, so also long.

4.2.2 Reasons for Writing Own Startup

The main advantage of an own startup is its shortness. Reducing program startup time is
negligible. Very short startup is good for very short programs (for example shell commands),
a few kB in size. In this case the standard startup may be easily longer than the program
code itself. One can also use own startup just for satisfaction of making the program shorter
by those few kilobytes. Custom startup code cannot be used, when the program uses ix-
emul.library. When the program is linked with libnix, the possibility of using own startup de-
pends on the standard C library functions used. Most of them do not need any preparations
and will work with any startup. Some more complex functions however require constructors
to be executed in startup. If we use such functions, we will get linker errors of unresolved
symbols. In such a case there is a simple choice – one either must replace these func-
tions with something else, or just use the standard startup code. Own startup is then useful
mostly when standard C library is not used at all (in favour of the native MorphOS API), or
only simple functions from it are used.
If we are still determined to use own startup, it is the time to tell the compiler about it. Skip-
ping standard startup is done with -nostartfiles argument. Then when we try to use our
startup with libnix, we use -nostartfiles together with -noixemul. Programmers wanting to
go the pure MorphOS API way (without the C library), should use -nostdlib option, which
also implies -nostartfiles.

4.2.3 Let’s Write It

Before we start to write the code, note that except things executed before calling the main()
function, some code must be also called after it returns. Then we also have ”cleanup code”.
As this code is usually placed in the same function (the one that calls main()), both the parts
are commonly called just startup code.
As mentioned before, program execution does not really start from the main() function.
Where does it start then? When an ELF executable is loaded from disk, a section named
”.text” is found and operating system jumps to the start of its contents. When a program is
written in C, it means start of the first function in code, as in C there is no way to write code
outside of a function. It must be noted, that C compiler may reorder functions in a single
object file. The GCC 2.95.3 compiler never does it, but aggressive optimizer of GCC 4 can
change order of functions. Fortunately it is done only inside a single source file. To make
sure that our startup function will be the first, it must be placed in a separate file. Then re-
sulting object file must be linked as the first one, as linking order is always preserved. After
this important note it is time for the code:

105

1 #include <proto/exec.h>
2 #include <proto/dos.h>
3 #include <dos/dos.h>
4 #include <workbench/startup.h>

The thing starts with including needed header files. We will need two basic system li-
braries: exec.library and dos.library. It explains why standard startup code, be it libnix or
ixemul.library, opens these two libraries – it simply needs them for itself.

1 struct Library *SysBase;
2 struct Library *DOSBase;

As our code will use these two libaries, we need to define their bases.

1 extern ULONG Main(struct WBStartup *wbmessage);

This is a declaration of the main function of our program. As the object file containing
startup code should contain only one function (the entry one), the rest of code has to be
moved to other object files, for reasons explained above. That is why the main function has
to be declared here, as we call it from the startup code. Alternatively its declaration may
be placed in some header file and included here. The name Main() is arbitrary, it can be
anything. I’ve just called it typically, capitalizing the first letter to avoid possible name confilct
with the standard library. The argument of Main() is startup message (mentioned above)
being sent by Ambient. If we do not plan to use it inside Main(), we can just declare it this
way:

1 extern ULONG Main(void);

The next important thing is to define a mysterious global symbol abox .

1 ULONG __abox__ = 1;

While not needed in the code, this symbol is used by the system executable loader to dif-
ferentiate between MorphOS ELF executables and other possible PowerPC ELF binaries.
If there is no abox defined, the executable will be recognized as PowerUP one and exe-
cuted through ppc.library, with unpredictable results.

1 ULONG Start(void)
2 {
3 struct Process *myproc = 0;
4 struct Message *wbmessage = 0;
5 BOOL have_shell = FALSE;
6 ULONG return_code = RETURN_OK;

106

Start() is the code entry point. Again, name of this function is not important, it may be
anything. It just has to be the first function in the linked executable. Some local variables
are declared here, which will be needed later myproc will contain a pointer to our process,
wbmessage will hold the Ambient startup message pointer. Variable have shell will be used
to detect if the program has been started from shell console or from Ambient. Finally re-
turn code is just the return code of the program, it will be returned to the system. The return
value is usually 0 when the program executed succesfully and RETURN OK constant is just
0.

1 SysBase = *(struct Library**)4L;

Time for initialization of the SysBase, the base of exec.library. The library is always open.
For historical and backward compatibility reasons the base pointer is always placed by the
system at address $00000004, so we just take it from there. Having exec.library available,
our code can check whether it has been started from shell or from Ambient:

1 myproc = (struct Process*)FindTask(0);
2 if (myproc->pr_CLI) have_shell = TRUE;

This information is taken from the Process structure being just system process descriptor.
The exec.library call FindTask() returns the calling task’s own descriptor if 0 is passed as its
argument. In case we are started from Ambient, receiving its message is compulsory:

1 if (!have_shell)
2 {
3 WaitPort(&myproc->pr_MsgPort);
4 wbmessage = GetMsg(&myproc->pr_MsgPort);
5 }

The startup message is being sent to process system port, so we receive it there. The
message may be then passed to our Main() function, if we plan to make some use of it, like
handling additional icon arguments.

1 if (DOSBase = OpenLibrary((STRPTR)"dos.library", 0))
2 {

The next step is opening dos.library, this library is opened in a pretty standard way. In fact
this minimal startup code does not need it. There are two reasons to open it anyway. First,
it is hard to imagine a program, which does not need dos.library – even ”Hello world!” needs
it. Secondly, all standard startup codes open it, so usually main code takes it for granted.
Then my startup behaves conventionally and opens dos.library as well.

1 return_code = Main((struct WBStartup*)wbmessage);

107

Yes, after these few lines we are ready to call the main code. As stated above, passing
the startup message from Ambient is optional. On the other hand, receiving the result and
passing it back to the system later is obligatory.

1 CloseLibrary(DOSBase);
2 }
3 else return_code = RETURN_FAIL;

From this point the startup code becomes cleanup one. Note also that proper error handling
must be done. dos.library is being closed, but if its opening failed before, the result of
execution is changed to RETURN FAIL. This is the hardest fail and means total inability to
execute. In practice MorphOS can’t boot if dos.library is not present in the system. But
OpenLibrary() may fail for other reasons, for example simple lack of free memory. Then the
startup code has to handle it in some reasonable way.

1 if (wbmessage)
2 {
3 Forbid();
4 ReplyMsg(wbmessage);
5 }

This snippet of code handles the Ambient startup message. Even if we make no use of
it, it must be replied at exit. But what does Forbid() do here? This function halts system
multitasking, specifically it prevents the system process scheduler to switch our process
away. Usually it may be done for a very short period of time only and followed by a match-
ing Permit(). At the first glance this code makes no sense then, a process stops process
switching and ... exits. We have to know one important thing however: process switching
is automatically reenabled when the process which called Forbid() ends. Then here is what
happens:

• Our task calls Forbid(), so no other process can interrupt it.

• It replies the Ambient startup message. As multitasking is stopped, Ambient is unable
to receive yet. The message just waits at its message port.

• Our task exits. Then the system restores multitasking.

• Ambient gets CPU time and receives the message. Note that at this point it is abso-
lutely certain, that our task does not exist anymore. Possibility of a race condition is
eliminated. Without Forbid() it could be possible that our process is removed from the
system while it still executes.

Of course multitasking halt period is extremely short, because our cleanup code ends im-
mediately after replying to Ambient:

1 return return_code;
2 }

108

4.2.4 $VER: - program identification string

This topic is not strictly related to startup code, but the version string is usually placed in it, so
I’ve decided to write a few words about it. The version string is a short text in some defined
format. This string contains the program name, version and revision number, compilation
date and optionally copyrigth or author info. The version string is decoded by many applica-
tions including Ambient, the system command version, the Installer program and more. The
text starts with $VER:, so it can be easily found in the program executable. As version tools
search for the version string from the start of the executable file, it is best if version string is
placed as close to the beginning of the file as possible. If the version string is declared as
a simple string constant, it is unfortunately placed in one of the ELF data sections. These
sections are placed after the code section by the linker. However we can force the version
string to be placed in the code section:

1 __attribute__ ((section(".text"))) UBYTE VString[] =
2 "$VER: program 1.0 (21.6.2011) c© 2011 morphos.pl\r\n";

Using a GCC specific extension attribute we can push the string into the ELF section
named .text, which is the code section. As the startup code object is linked as the first
object, the version string will appear at the beginning of the executable, just after the code of
the Start() function. Why after? It is simple, if we place it before the real code, the operating
system will jump ”into” the string, trying to execute it, and then of course it will crash.

4.2.5 A Complete Example

A complete ”Hello world!” example1 with custom startup code shows the described ideas
at work. It only uses the MorphOS API, so is compiled with -nostdlib option. Executable
size is 1592 bytes. For comparision, libnix startup and printf() gives 30 964 bytes, when one
replaces printf() with MorphOS Printf() from dos.library it is still 13500 bytes.
As the project consists of two *.c files, a simple makefile is added to it. Example may be
compiled just by entering make in a console.

1LHA archive is available here: http://krashan.ppa.pl/mph/files/helloworld.lha

109

http://krashan.ppa.pl/mph/files/helloworld.lha

	First steps in MorphOS programming
	Installation of Software Development Kit and its basic usage
	Installing the SDK
	Choosing a Compiler
	Standard C and C++ Libraries

	The First Traditional ''Hello world!''
	''Hello World!'' With the Standard C Library
	''Hello World!'' With the MorphOS Native API

	Useful Compiler Options
	Compiling and linking
	Options order
	Warning options
	Linker options
	Optimization options

	MorphOS API and Its Organization
	Libraries Overview
	How to Use a Library in an Application
	Manual Library Opening and Closing

	Common Concepts
	Exec Lists
	Introduction
	From a Plain List to Exec List
	Exec List Elements: Node and Header
	List Initialization, Empty List Check
	List Iterator
	Removing List Items From Inside of an Iterator
	Adding and Removing Items
	Head and Tail
	Functions or Macros?
	Enqueueing

	Taglists
	Passing Taglists to Functions
	Special Tags
	Traversing Taglists With NextTagItem()
	Taglists Processing
	Finding Tags and Data
	Creation and Copying
	Filtering and Mapping
	Filtering Tags by Identifier
	Tag Mapping
	Filtering Tags Data
	Data Conversion
	Bitfields
	Structures

	Magic User Interface Programming
	Introduction
	The First Steps
	Short BOOPSI Overview
	Object Oriented Programming
	Classes
	Methods
	Setting an attribute
	Getting an attribute
	Object construction
	Object destruction
	MUI Extensions to BOOPSI

	Event Driven Programming, Notifications
	Event Driven Programming
	Notifications in MUI
	Reusing Triggering Value
	Notification loops
	The ideal MUI main loop

	"Hello World!" in MUI

	Subclassing
	General Rules and Purpose of Subclassing
	Introduction
	Object Data
	Writing Methods
	The Dispatcher
	Class Creation
	Class Disposition

	Overriding Constructors
	Objects with child objects

	Overriding Destructors
	Overriding OM_SET()
	Overriding OM_GET()
	Subclassing Application Class
	MUI Subclassing Tutorial: SciMark2 Port
	The application
	Code inspection
	GUI design
	Methods and attributes
	Implementing functionality
	Final port

	Useful Techniques
	Locating Objects in the Object Tree
	Text Class: Buttons, Textfields, Labels
	Introduction
	Common attributes
	Labels
	Textfields
	Buttons

	Reggae: MorphOS multimedia framework
	Introduction
	Overview
	Kinds of Reggae classes
	Multimedia.class
	Streams
	Demuxers
	Decoders
	Filters
	Encoders
	Muxers
	Outputs
	Internal classes

	Reggae common formats
	Audio common formats
	Video common formats

	Tutorials
	General
	Accessing Reggae in applications
	Downloading web resources with http.stream - basics
	Writing Reggae classes

	Audio
	Playing a sound from file
	Playing a sound from memory
	Playing a continuous, synthesized wave

	Additional
	In-depth: The New MorphOS Memory System
	Foreword
	Compatibility
	Reducing Effects of Fragmentation
	Reducing Memory Fragmentation
	The Implementation

	Writing Custom Startup Code
	Forword
	Reasons for Writing Own Startup
	Let's Write It
	$VER: - program identification string
	A Complete Example

