MUI Royale 1.7

Easy GUI Creation For You Kings and Queens of MUI

Andreas Falkenhahn

Table of Contents

1 General information............................. 1
1.1 Introduction.............o i 1
1.2 Terms and conditions...........vviiiiiiiiiiiiiiiiieeeeennnnns 1
1.3 Requirements.ccooiiiiiiiiiiiiii i 2
1.4 Support for palette screens................coiiiiiiiiiiii 2

2 About MUI Royale.............................. 5
2.1 HIStOTy . vee et 5
2.2 FUbUTe. ..o 5
2.3 Frequently asked questions............. ..o i 5
2.4 Credits. ..o 5)

3 Fundamental MUI concepts.................... 7
3.1 Application treeoiiiite i e 7
3.2 Class hierarchy 8
3.3 Automatic layout engine.......... i 8
3.4 Group 0bJeCtS .ottt 9
3.5 Object handlingccooiii i 11
3.6 Notifications.o 12
3.7 Applicabilityo 13
3.8 Cyclechain....... ... i 13
3.9 Text formatting codes ... 14
3.10 Implementing online help........... L. 15
311 Context MENUS . . oottt ettt ettt et e e e e aie e 16
312 Drag’n’drop. ... 17
3.13 Character encoding............oeuuiiiiini .. 17
3.14 Hollywood bridge. ..ot 18
3.15 Style guide 22

4 Tutorial............... 25
4.1 Tutorial ... 25

5 Function reference 35
5.1 mui.CreateGUIL. e 35
5.2 mui.CreateObject ... 36
5.3 mui.DoMethod 37
5.4 mui.FreeGUL 38
5.5 mui.Freelmage....... ..o 38
5.6 mui.FreeObject 39
D7 MULGE .o 39
5.8 mui.HaveObject ... 40

ii

MUTI Royale manual

5.9 muidsVersiond. ... 40
510 mui.Notify ... 41
511 mui.Request. 41
B2 mui.Set ... 43

Application class 45
6.1 OVeIVIEW . .\ttt e 45
6.2 Application.AboutMUT 45
6.3 Application.AboutMUIRoyale 45
6.4 Application. AddWindow. ... 45
6.5 Application.Base 46
6.6 Application.ConfigChangecooiiiiiiiiiiii .., 46
6.7 Application.DoubleStart i 47
6.8 Application.DropObject ... 47
6.9 Application.HelpFile.......... .. i 47
6.10 Application.lcon..... ... 48
6.11 Application.Iconified 48
6.12 Application.Load 49
6.13 Application.Menustrip.........coouiiiiiii 50
6.14 Application.OpenConfigWindowt 50
6.15 Application.RemoveWindow, 51
6.16 Application.Save ... 51
6.17 Application.SingleTask ... 52
6.18 Application.Sleep. ... 52
6.19 Application.WindowList............ 53

Areaclass............. 55
Tl OVEIVIEW . oottt 55
7.2 Area.Background......... 55
7.3 Area.BackgroundBrush.......... L. 56
7.4 Area.Backgroundlmage........... i, 57
7.5 Area.BackgroundRGB....... 57
7.6 Area.BottomEdge......... 58
7.7 Area.ContextMenuo 58
7.8 Area.ContextMenuTriggeroiiiiiiiiiii ... 59
7.9 Area.ControlChar i 59
7.10 Area.CycleChaincooviriiniiii i 59
7.11 AreaDisabled........... .. 60
712 Area.FixHeighto 60
7.13 Area.FixHeightTxt 60
714 Area.FixWidth. 61
7.15 Area.FixWidthTxt ... 61
716 AreaFont........ ... i 61
717 AreaFrame i 62
7.18 Area.FramePhantomHoriz............, 63
7.19 Area.FrameTitle........ ... 63
7.20 Area.Height 64

721 Area HIdeo 64

7.22 Area.HorizWeight 64
7.23 Area.InnerBottom..........oo 65
7.24 Area.nnerLeft 65
7.25 AreadnnerRight..... o 65
7.26 Area.InnerTop........ ..ot 66
7.27 AreanputMode. 66
7.28 Area.LeftEdge.o 66
7.29 Area.MaxHeight........ ... i 67
7.30 Area.MaxWidth 67
7.31 Area.Pressed 67
7.32 Area.RightEdgeo 68
7.33 Area.Selected.o 68
7.34 Area.ShortHelp....... ... 69
7.35 Area.ShowSelStateo 69
7.36 Area.TopEdge.o 70
7.37 Area.VertWeight 70
7.38 Area.Weight.o 70
7.39 Area. Widtho 71
8 Busyclass.............. ... 73
.1 OVeIVIEW . ottt 73
8.2 Busy.Move ... 73
8.3 Busy.Speed. 73
9 Buttonclass......... 75
0.1 OVOIVICW . o e vttt et e e 75
9.2 Button.HIiCharo 75
9.3 Button.Label. 75
9.4 Button.NoAutoKey....... ... 76
9.5 Button.Pressedo 76
9.6 Button.Selected ... 76
9.7 Button.Toggle. i 7
10 Checkmark class.......... 79
101 OVeIVIEW . oo e et et e 79
10.2 Checkmark.Selected 79
11 Coloradjust class.............................. 81
11,1 OVeIVIEW . oottt e e 81
11.2 Coloradjust. RGB o 81
12 Colorfield class.......... i ... 83
12,1 OVEIVIEW . o e ettt e e e 83

12.2 Colorfield. RGB ... oo 83

MUTI Royale manual

iv

13 Cycleclass.................... L. 85
131 OVeIVIEW . .ottt 85
13.2 Cycle.Active ..o 85

14 Dirlist class............. 87
141 OVEIVIEW . .ottt e 87
14.2 Dirlist.AcceptPattern........... 88
14.3 Dirlist.Directoryo 88
14.4 Dirlist.DrawersOnlyo e 89
14.5 Dirlist.FilesOnly. ... 89
14.6 Dirlist.FilterDrawers ..., 89
14.7 Dirlist. MultiSelDirs.t 90
14.8 Dirlist. NumBytes...... ... i 90
14.9 Dirlist. NumDrawers ..o 90
14.10 Dirlist. NumFileso i 91
14.11 Dirlist.Path ... 91
14.12 Dirlist.RejectIcons. ... 91
14.13 Dirlist.RejectPattern o i 92
14.14 Dirlist.ReRead 92
14.15 Dirlist.SortDirs.ooui 92
14.16 Dirlist.SortHighLowo i, 93
14.17 Dirlist.SortTType. .o .vv i 93
14.18 Dirlist.Status. ... e 93
14.19 Dirlist. Titleo e 94

15 Floattext class 95
15.1 OVeIVIEW . .ottt 95
15.2 Floattext.Justifyo i 95
15.3 Floattext. TabSizeo 95
15.4 Floattext. Text. e 96

16 Gaugeclass............ 97
16,1 OVeIVIEW . .ottt ettt 97
16.2 Gauge.Currento.ovi e e 97
16.3 Gauge.Divide. 97
16.4 Gauge Horiz.o 97
16.5 GaugeInfoText....... oo 98
16.6 Gauge.Max. 98

17 Groupclass.............. 101

17.1 OVEIVIEW . o oottt e e e e 101
17.2 Group.ActivePage.o i 102
17.3 Group.AddHead......... ... 102
174 Group. AddTail........coo i 103
17.5 Group.ChildList. ..o 103
17.6 Group.Colummns 104
17.7 Group.ExitChange o i i 105
17.8 Group.HorizSpacing ... 105
17.9 Group.InitChange....... ... i 105
17.10 Group.Insert...... ..o 106
17.11 Group.PageMode 107
17.12 Group.Remove. i 107
17.13 Group.SameHeight 108
17.14 Group.SameSizZe.vvrit it 108
17.15 Group.SameWidth 109
17.16 Group.Spacingoonnu et 109
17.17 Group.Title. ..o 109
17.18 Group.VertSpacingoouueiiii i 110
18 Hollywood class.............................. 111
18.1 OVEIVIEW . ¢ ottt 111
18.2 Hollywood.Display ... 111
18.3 Hollywood.MaxHeight........... 111
18.4 Hollywood.MaxWidth......... i i, 112
18.5 Hollywood.MinHeight o i i, 112
18.6 Hollywood.MinWidth i i, 113
19 HSpaceclass............ccooiiiiiiiiiiii... 115
19.1 OVeIVIEW . oottt et e e e e 115
19.2 HSpace.Width 115
20 Imageclass................ ... 117
201 OVEIVIEW . .ttt ettt ettt e e e e 117
20.2 Image.Brush i 117
20.3 Image.FreeHoriz....... .o 117
20.4 ImageFreeVert...... ..o 118
20.5 IMage.SOUTCE. ..o\ttt 118
20.6 Image.State.o 119
21 Imagebuttonclass........................... 121
211 OVEIVIEW . . ettt ettt e 121

21.2 Imagebutton.Pressedc i 121

vi MUTI Royale manual

22 Labelclass......... 123
22.1 OVeIVIEW. o oottt 123
22.2 Label.Centered...... ..o 123
22.3 Label.DoubleFrame i 123
22.4 Label.FreeVerto 124
22.5 LabelKey.o 124
22.6 Label.LeftAlignedo, 124
22.7 Label.SingleFrame........... 124

23 Listtreeclass............ 127
23. 1 OVEIVIEW . o oottt e 127
23.2 Listtree. Activeo 128
23.3 Listtree.AutoLineHeight L. 128
23.4 Listtree.Closeot 129
23.5 Listtree.DoubleClick. 129
23.6 Listtree.DragDropSort......... .o 130
23.7 Listtree. EmptyNodes.......... .o 130
23.8 Listtree.Exchange i i 130
23.9 Listtree.GetEntry ... 131
23.10 Listtree.FindNameo . 133
23.11 Listtree.Insert. ... 134
23.12 Listtree.MinLineHeight.......o L. 135
23.13 Listtree.Moveot 136
23.14 Listtree.Openot e 137
23.15 Listtree.Quiet o 137
23.16 Listtree.Remove. ... 138
23.17 Listtree.Rename o 138
23.18 LiISttree.SOort ..ottt 139
23.19 Listtree.SortHOOK 139
23.20 Listtree. Title. ... 140

24 Listtreenode class............................ 141
24.1 OVEIVIEW . o oottt 141
24.2 Listtreenode.Frozen 141
24.3 Listtreenode.INameo 141
24.4 Listtreenode.NoSign........ ... 141
24.5 Listtreenode.Open.o 142

25 Listview class............. 143
20,1 OVEIVIEW . o oottt e 143
25.2 Listview. Active. 144
25.3 Listview.AdjustHeight.......... 144
25.4 Listview. AdjustWidth......... 145
25.5 Listview.AutoLineHeight 145
25.6 Listview.AutoVisible i 145

25.7 Listview.Clear.ot 146

25.8 Listview.ClickColumn i ... 146
25.9 Listview.DefClickColummn............., 146
25.10 Listview.DoubleClick..... ...t 146
25.11 Listview.Entries. 147
25.12 Listview.Exchange 147
25.13 Listview.First 148
25.14 Listview.GetEntry ... 148
25.15 Listview.GetSelection ...t 148
25.16 Listview.Input 149
25.17 Listview.Insertoo i 149
25.18 Listview.InsertPosition i 150
25.19 Listview.Jumpooiiiiiii 150
25.20 Listview.MinLineHeight oL, 151
25.21 Listview.Move 151
25.22 Listview.MultiSelect.......... ... i 151
25.23 Listview.Quiet 152
25.24 Listview.Remove 152
25.25 Listview.Rename...........o i 153
25.26 Listview.Select ... 153
25.27 Listview.ScrollerPos. i 154
25.28 Listview.SelectChange............ ..., 155
25.29 LIStVIEW.SOTb. .ottt 155
25.30 Listview.SortFunc...........oooiiiii 155
25.31 Listview.TitleClick 156
25.32 Listview.Visible....... ... 156
26 Listviewcolumn class........................ 159
26. 1 OVEIVIEW . .ottt e 159
26.2 Listviewcolumn.Bar 159
26.3 Listviewcolumn.Col 159
26.4 Listviewcolumn.Delta i 160
26.5 Listviewcolumn.Hidden........... 160
26.6 Listviewcolumn.MinWidth................ 160
26.7 Listviewcolumn.MaxWidth 161
26.8 Listviewcolumn.PreParse........... 161
26.9 Listviewcolumn.Title....... 161
26.10 Listviewcolumn.Weight.......... o i i 162
27 Menuclass........... 163
271 OVEIVIEW . o oottt e e 163
27.2 Menu.AddHead 163
27.3 Menu. AddTail. 163
274 Menu.Disabled 164
275 Menu.dnsert 164
27.6 Menu.Remove..... i 164
277 Menu. Title. ... 165

vii

viii MUI Royale manual

28 Menuitem class................... 167
28. 1 OVEIVIEW . .ttt ittt e e e e 167
28.2 Menuitem.CommandString ..., 167
28.3 Menuitem.Disabled............. ... i 167
28.4 Menuitem.Exclude 168
28.5 Menuitem.Selected 168
28.6 Menuitem.Shortcut. ... 168
28.7 Menuitem.Title i 168
28.8 Menuitem. Typecooiiiiii 169

29 Menustripclass................ 171
20,1 OVEIVIEW . .\ttt et e e 171
29.2 Menustrip.AddHead o 172
29.3 Menustrip. AddTail 172
29.4 Menustrip.Inserto 173
29.5 Menustrip.Removeo 173

30 Notifyclass.................................. 175
30.1 OVEIVIEW . ¢ ottt et e et 175
30.2 Notify. ApPMeSSageo vttt e 175
30.3 NoOtify.Class . .« oot 176
30.4 Notify.ExportID..... ..o 176
30.5 Notify.HelpLine 176
30.6 Notify.HelpNode ... 177
30.7 Notify. D . .. 177
30.8 Notify.MUICIASS - ..o vttt 177
30.9 Notify.NoNotify ... 178
30.10 Notify.NotifyData 178
30.11 Notify.Revision....... ..o 178
30.12 Notify.UserData.o 179
30.13 Notify. Version.ouuiiiiii i 179

31 Numericbuttonclass........................ 181
311 OVEIVIEW . .ttt et e 181

32 Popdrawer class 183
321 OVEIVIEW . .ttt et e e e 183
32.2 Popdrawer.Acknowledge......... ... 183
32.3 Popdrawer.Activeo 183
32.4 Popdrawer.AdvanceOnCR.......... 184
32.5 Popdrawer.Contents.ottt 184
32.6 Popdrawer.SaveMode.o i 184

32.7 Popdrawer. Title....... ... i 185

33 Popfileclass.....................L. 187
331 OVEIVIEW . ettt et e e e e 187
33.2 Popfile.AcceptPattern........ i 187
33.3 Popfile.Acknowledge. 187
33.4 Popfile. Active ... 188
33.5 Popfile. AdvanceOnCR.......... ... i 188
33.6 Popfile.Contents....... ... 188
33.7 Popfile.Pattern...... 189
33.8 Popfile.Rejectlcons 189
33.9 Popfile.RejectPattern.............. 189
33.10 Popfile.SaveModeo 190
33.11 Popfile.ShowPattern........... i i 190
33.12 Popfile.Title ... 190

34 Popfontclass..................... 191
341 OVEIVIEW . .ttt et e e e 191
34.2 Popfont.Acknowledge. 191
34.3 Popfont. Active 191
34.4 Popfont.AdvanceOnCR......... ... i, 192
34.5 Popfont.Contents......... ... 192
34.6 Popfont.FixedWidthOnly............. ..o il 192
34.7 Popfont.MaxHeight 193
34.8 Popfont.MinHeight 193
34.9 Popfont. Title. 193

35 Poplistclass.................................. 195
351 OVEIVIEW . .ttt e e 195
35.2 Poplist.Acknowledgeo i 195
35.3 Poplist.AdvanceOnCR...........cco i 195
35.4 Poplist.Contents ..ot 196

36 Poppenclass................................. 197
36. 1 OVEIVIEW . ettt et e e e e e 197
36.2 Poppen.RGB...... . 197
36.3 Poppen.Title.o 197

37 Propclass.......... ... 199
BT 1 OVEIVIEW . . .ttt et e e 199
37.2 Prop.Decrease..........c.uiiiiiii 199
37.3 Prop.Entries ... 199
374 Prop.First. ... 199
37.5 Prop.Horiz....... .. o 200
37.6 Prop.ncrease 200
37.7 Prop.SHder.ot 200
37.8 Prop.UseWinBorder..........o i 201
37.9 Prop.Visible. ... 201

ix

X MUTI Royale manual

38 Radioclass................................... 203
381 OVEIVIEW . o vttt ittt ettt ettt e 203
38.2 Radio.Active....... .o 203

39 Rectangleclass............................... 205
391 OVEIVIEW .« vttt ettt ettt et e 205
39.2 Rectangle.BarTitle....... ... oo i i 205
39.3 Rectangle HBar......... i 205
39.4 Rectangle.VBar....... ... i 206

40 Registerclass................ 207
40.1 OVEIVIEW .« e et e 207
40.2 Register.ActivePage 207
40.3 Register. AddPage ... 208
40.4 Register.Closable........ ... i 208
40.5 Register.ClosePage....... ... 209
40.6 Register.CloseRequest i 209
40.7 Register.GetPagelD 209
40.8 Register.InsertPage...... i i 210
40.9 Register.Pages ... 211
40.10 Register.Position.......... ... o i i 211

41 Scaleclass............oiiiiiiii 213
411 OVEIVIEW . .ttt e 213
41.2 Scale.HOTIZ. . ..o 213

42 Scrollbarclass................................ 215
421 OVEIVIEW . ¢ ottt e e e e e e 215
42.2 Scrollbar.IncDecSize. 215
42.3 Scrollbar. Typeot 215

43 Scrollgroup class............................. 217
3.1 OVEIVIEW .\ttt ittt ettt e 217
43.2 Scrollgroup.FreeHorizoo i i 217
43.3 Scrollgroup.FreeVert. 218

43.4 Scrollgroup.UseWinBorder o it 218

44 Slider class........... 219
441 OVEIVIEW . .ttt e et e et e e e 219
44.2 Slider.Format e 219
44.3 Slider HOrizooo 219
44.4 Slider.Levelo 220
44.5 SHAer.Maxttt 220
44.6 SHder.Min.oo i e 220
44.7 Slider.Pressedc.ooiii 221
44.8 Slder.Quietttt 221
44.9 Slider.Reverse.ooiuiiii i 221
44.10 Slider.Stringifyo 222

45 Stringclass........... ... L. 223
5.1 OVEIVIEW . ettt et e e e e e e 223
45.2 String.AcCept . ..o 223
45.3 String.Acknowledge 223
45.4 String.AdvanceOnCR, 224
45.5 String.Contents ... 224
45,6 String.Copy . ..o vttt 224
45.7 String.CursorPos 225
45.8 String.Cubt . ..ot 225
45.9 String.Insert 225
45.10 String.MarkEnd......... 226
45.11 String.MarkStart..... ... 226
4512 String.Maxlen 226
45.13 String.Paste. 227
45.14 String.Redo.o 227
45.15 String.Rejecto 227
4516 SEring.Secret......o.u i 228
45.17 String. Undo. ... 228

46 Text class, 229
46.1 OVEIVIEW . ¢ ottt ettt e e 229
46.2 Text.Contents. 229
46.3 Text.HiCharot e 229
46.4 Text.PreParse....... .o 230
46.5 Text.SetMaxot 230
46.6 Text.SetMin.o 231

46.7

Text. SetVIMax .. oo 231

xi

xii MUI Royale manual

47 Texteditor class.............................. 233
471 OVeIVICW . oottt 233
47.2 Texteditor.ActiveObjectOnClick 233
47.3 Texteditor Align....... ... 233
47.4 Texteditor.AreaMarked 234
47.5 Texteditor. AutoClp.t 234
47.6 Texteditor.Clear.ot 235
47.7 Texteditor.Colorot 235
47.8 Texteditor.ColorMap ... 235
479 Texteditor.Colummnsot 236
47.10 Texteditor.Contentsooviiiiiii . 236
4711 Texteditor.ConvertTabscc i 236
4712 Texteditor.Copy ... oo 237
47.13 Texteditor.CursorX 237
47.14 Texteditor.CursorYttt 237
4715 Texteditor.Cut........oiii 238
4716 Texteditor.Eraset 238
47.17 Texteditor.ExportHook.......... o i 238
47.18 Texteditor.ExportWrap ... 239
4719 Texteditor.FixedFont......... 239
47.20 Texteditor.GetSelectioncooviiiiiiiii ... 240
47.21 Texteditor.GetText.o 240
47.22 Texteditor.HasChanged oL, 241
47.23 Texteditor.ImportHook........... 241
47.24 Texteditor.ImportWrap ... 243
47.25 Texteditor.Insert ... 243
47.26 Texteditor.Marko 243
47.27 Texteditor.MarkAll. 244
47.28 Texteditor.MarkNone i 244
47.29 Texteditor.Paste 244
47.30 Texteditor.PasteColors.........cooviiiiiiiii . 245
47.31 Texteditor.PasteStyles...... ... 245
47.32 Texteditor.ReadOnly....... ... i 245
47.33 Texteditor.Redo........ ... 246
47.34 Texteditor.RedoAvailable............ i .. 246
47.35 Texteditor.Replace, 246
47.36 Texteditor. ROWS 247
47.37 Texteditor.Scrollbar......... 247
47.38 Texteditor.Search 247
47.39 Texteditor.SetBoldccoi i 248
47.40 Texteditor.SetColorot 249
47.41 Texteditor.SetItalic......... ..o 249
47.42 Texteditor.SetUnderline........... i, 250
47.43 Texteditor.StyleBold 251
47.44 Texteditor.Styleltalic......... ..o 251
47.45 Texteditor.StyleUnderline oo, 251
47.46 Texteditor.TabSize....... ... 252

47.47 Texteditor.Undoot 252

47.48 Texteditor.UndoAvailable, 252
47.49 Texteditor.UndoLevelso i, 253
47.50 Texteditor.WrapBorder.............. 253
47.51 Texteditor.WrapMode. ... 253
47.52 Texteditor. WrapWords, 254
48 Toolbar class.............. 255
A8. 1 OVEIVIEW . o ottt ettt e e e 255
48.2 Toolbar. ACtiveo 255
48.3 Toolbar.BarPosciiiiii 256
48.4 Toolbar.BarSpacert 256
48.5 Toolbar.BarSpacerSpacing............cooiiiiiiiiiiiiii... 256
48.6 Toolbar.Borderlesso 257
48.7 Toolbar.BottomBarFrameSpacing..................... 257
48.8 Toolbar.BottomInnerSpacing, 257
48.9 Toolbar.Columns.ouiiiiiiiii 258
48.10 Toolbar.DisMode....... .o 258
48.11 Toolbar.DontMoveo 259
48.12 Toolbar.EnableKeys.......... .o 259
48.13 Toolbar.Frame i 259
48.14 Toolbar.Free 260
48.15 Toolbar.FreeHoriz. ... 260
48.16 Toolbar.FreeVerto 260
48.17 Toolbar Horizt 261
48.18 Toolbar.HorizInnerSpacing, 261
48.19 Toolbar.HorizSpacing ..o .. 261
48.20 Toolbar.HorizTextGfxSpacing ..., .. 262
48.21 Toolbar.Ignore Appearanceoevieiieenn... 262
48.22 Toolbar.LabelPoso 262
48.23 Toolbar.LeftBarFrameSpacingt 263
48.24 Toolbar.MouseOvVerttt 263
48.25 Toolbar.NtRaiseActive ...t 264
48.26 Toolbar.Raised....... ..o 264
48.27 Toolbar.RightBarFrameSpacing 264
48.28 Toolbar. ROWS ... 265
48.29 Toolbar.Scaleoouiiiiiii 265
48.30 Toolbar.Scaledo 265
48.31 Toolbar.SpacersSizeoouuiiiiiii i 266
48.32 Toolbar.SpecialSelect. ... 266
48.33 Toolbar.SUnnyooiuuiiiiii i 266
48.34 Toolbar.TextOverUseShineociiiiii ... 267
48.35 Toolbar.TopBarFrameSpacingoo... 267
48.36 Toolbar. ToplnnerSpacing............ooiiiiieeennnnnn. 267
48.37 Toolbar.VertSpacingvuiutiiiiiiiiinan. 268
48.38 Toolbar.VertTextGfxSpacingt 268
48.39 Toolbar.ViewMode.oiiiiiii i 268

xiii

xiv MUI Royale manual

49 Toolbarbutton class 271
49,1 OVEIVIEW .« et e 271
49.2 Toolbarbutton.Disabled i 271
49.3 Toolbarbutton.DisImage............ il 271
49.4 Toolbarbutton.Exclude.................. 271
49.5 Toolbarbutton.Hide i i 272
49.6 Toolbarbutton.Image.......... ... i 272
49.7 Toolbarbutton.Immediate oL 272
49.8 Toolbarbutton.NoClicko i i, 273
49.9 Toolbarbutton.Pressed i 273
49.10 Toolbarbutton.Selected.............. ... i 273
49.11 Toolbarbutton.Sellmaget 274
49.12 Toolbarbutton.ShortHelp........... o oot 274
49.13 Toolbarbutton.Sleep....... ..o 274
49.14 Toolbarbutton.Toggle i i 275

50 Virtgroupclass.................. 277
DO L OVeIVIEW . . oottt ettt e e e e 277
50.2 Virtgroup.Height o i i 277
50.3 Virtgroup.Horizo i 277
50.4 Virtgroup.Inpubo 278
50.5 Virtgroup.Left 278
50.6 Virtgroup. Top. ... 278
50.7 Virtgroup.Width 279

51 Volumelist class.............................. 281
5 0 O 13 7 1) 281
51.2 Volumelist. Title........ .o 281

52 VSpaceclass..............ciiiiiiiii 283
B2. 1 OVEIVIEW . . .ttt ettt e e 283
52.2 VSpace.Height 283

53 Window class 285
D31 OVeIVIEW . .ottt ittt e 285
53.2 Window.Activate...... ...t 285
53.3 Window.ActiveObjectcooiiii 285
53.4 Window. AppWindow. ...t 286
53.5 Window.Borderless. ... 286
53.6 Window.CloseGadget.........c.oovviiiiiiiiiiiiiiiiinan 286
53.7 Window.CloseRequest ..., 287
53.8 Window.DefaultObjecto 287
53.9 Window.DepthGadget. ... 287
53.10 Window.DragBaro i 288
53.11 Window.Height 288

53.12 Window.LeftEdge....... .o 289

53.13 Window. Menustrip.........coouiiiiiiiii i 289

53.14 Window.MouseObject 289
53.15 Window . MuilD 290
53.16 Window.NeedsMouseObject ..., 290
53.17 Window.NOMenus.coovnii e 290
53.18 Window.Open.oouuiiii e 291
53.19 Window.PubScreen 291
53.20 Window.ScreenTitle.o 292
53.21 Window.ScreenToBack 292
53.22 Window.ScreenToFront............. . oot 292
53.23 Window.Sleep. . ..o uutii i e 293
53.24 Window.SizeGadget.ot 293
53.25 Window.Snapshotci . 293
53.26 Window.ToBack i 294
53.27 Window. ToFront 294
53.28 Window.TopEdge ... 294
53.29 Window.UseBottomBorderScroller.......................... 295
53.30 Window.UseLeftBorderScroller 295
53.31 Window.UseRightBorderScroller............................ 295
53.32 Window. Title 296
53.33 Window. Width....... ... 296
Appendix A Licenses 299
Al MUILBCENSE. o oo 299
A2 Expat HCenSet 299
A3 LGPL Censeot 299

1 General information

1.1 Introduction

MUI Royale is a plugin for Hollywood that allows you to easily create MUI GUIs with
Hollywood. The GUI layout can be conveniently defined using an XML file that is converted
into a MUI GUI by MUI Royale on the fly. It just doesn’t get any easier!

MUTI Royale supports over 40 MUI classes including popular third-party classes like TextE-
ditor.mcc and TheBar.mcc. Creating and managing menustrips is also fully supported. The
highlight of MUI Royale, however, is certainly its inbuilt Hollywood MUTI class. This class
allows dynamic embedding of complete Hollywood displays into MUI GUIs which can be
used to combine the best of Hollywood and MUI into one powerful application.

MUI Royale comes with extensive documentation in various formats like PDF, HTML,
AmigaGuide, and CHM that describes MUI programming basics in detail and provides a
convenient function and class reference. A step-by-step tutorial that guides you to your first
MUT program is also included. On top of that, almost 20 example scripts are included in
the distribution archive, many of which are direct ports from the MUI 3.8 SDK by Stefan
Stuntz, but there are also original developments that show how to create video and song
players using the combined power of Hollywood and MUI.

All this makes MUI Royale the truly royal MUI experience, carefully crafted for you kings
and queens of MUT!

1.2 Terms and conditions
MUI Royale is (©) Copyright 2012-2017 by Andreas Falkenhahn (in the following referred to
as "the author"). All rights reserved.

The program is provided "as-is" and the author can not be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

This plugin may be freely distributed as long as the following three conditions are met:

1. No modifications must be made to the plugin.

2. It is not allowed to sell this plugin.

3. If you want to put this plugin on a coverdisc, you need to ask for permission first.
This software uses the Magic User Interface (MUI) which is (C) Copyright 1992-97 by Stefan
Stuntz. See Section A.1 [MUTI license], page 299, for details.

This software uses Expat (C) Copyright 1998, 1999, 2000 Thai Open Source Software Center
Ltd and Clark Cooper. (C) Copyright 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.
See Section A.2 [Expat license|, page 299, for details.

This program uses TextEditor.mcc by Allan Odgaard and the TextEditor.mcc Open Source
Team. See Section A.3 [LGPL license], page 299, for details.

This program uses TheBar.mcc by Alfonso Ranieri and the TheBar.mcc Open Source Team.
See Section A.3 [LGPL license], page 299, for details.

This program uses codesets.library by Alfonso Ranieri and the codesets.library Open Source
Team. See Section A.3 [LGPL license|, page 299, for details.

2 MUTI Royale manual

The documentation of MUI Royale is based on the MUI 3.8 software development kit (¢)
Copyright 1992-97 by Stefan Stuntz. Additional documentation was adapted from the
TextEditor.mcc and TheBar.mcc developer materials.

Amiga is a registered trademark of Amiga, Inc. All other trademarks belong to their
respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements

— Hollywood 5.2 or better

— MUI 3.8 or better

— 68020+ or PowerPC

— codesets.library for UTF-8 support

— Toolbar class requires TheBar.mcc 26.11 or better

— Texteditor class requires TextEditor.mcc 15.47 or better
— optional: CyberGraphX or Picasso96 for RT'G screens

— optional: guigfx.library and render.library for palette screens

1.4 Support for palette screens

Starting with MUI Royale 1.4, the plugin can also be used on palette-based screens, i.e.
on screens in depths of 8-bit and below. This feature, however, requires guigfx.library and
render.library to be installed. Otherwise, MUI Royale will fail to work on palette-based
screens.

If your application doesn’t only use MUI windows, but also needs to open normal Hollywood
displays in addition to the MUI windows, you also have to install the Plananarama plugin
which allows Hollywood to run on palette-based screens and you need to call @REQUIRE on

Plananarama before you call @REQUIRE on MUI Royale, i.e. your script has to start like
this:

OREQUIRE "plananarama"

OREQUIRE "muiroyale"

If your script only uses MUI windows, however, you don’t need Plananarama. guigfx.library
and render.library are sufficient then. If you wish to open Hollywood displays on palette-
based screens as well, though, make sure to install Plananarama first.

2 About MUI Royale

2.1 History
Please see the file history.txt for a complete change log of MUI Royale.

2.2 Future

Here are some things that are on my to do list:
— support for drag’n’drop

— support for more MUI classes

2.3 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the mailing list or forum because your problem might have been covered here.

Q: My GUI is not resizable. Isn’t one of the big advantages of MUI that its GUIs are
always resizable and MUI takes care of this automatically?

A: Yes, but there are some things that you need to keep in mind for the resize feature to
work correctly. If there is a gadget in your GUI that has a fixed size, you need to pad it
using resizable <rectangle> objects on its sides. Then your GUI will be resizable again. For
example, imagine you have a 64x64 <image> object in a horizontal group in your window.
MUI won’t be able to resize this window unless you add rectangle objects to the sides of
your image object because MUI needs to find an object that can be resized so you need to
take care that non-resizable objects in your GUI are always padded with resizable ones. By
the way, be careful with the <label> tag: Objects of label class are actually not resizable!
If you want resizable labels, just use <text> instead.

Q: Why are labels not resizable then?

A: Honestly, I don’t know. There is a Label.FreeVert attribute but the corresponding
Label.FreeHoriz is missing. I do not really know why Stefan Stuntz did it this way but I
am sure there is some rationale behind it.

Q: Why are there no Application.Author, Application.Copyright, Application.Description,
Application.Title, and Application.Version attributes?

A: These attributes have been deliberately left out to avoid redundancies with Hollywood.
Hollywood already offers the @APPAUTHOR, @APPCOPYRIGHT, GAPPDESCRIPTION, GAPPTITLE,
and @APPVERSION preprocessor commands. The contents of these preprocessor commands
will be automatically passed to the MUI application object when it is created.

2.4 Credits

MUI Royale was written by Andreas Falkenhahn. Thanks have to go to Stefan Stuntz
for his wonderful MUI toolkit, Alfonso Ranieri for TheBar.mcc and codesets.library, Allan

6 MUTI Royale manual

Odgaard for TextEditor.mcc, and the TheBar.mcc and TextEditor.mcc Open Source Teams
for maintaining these classes and fixing old bugs.

If you need to contact me, please send an email to andreas@airsoftsoftwair.de or use
the contact form at http://www.hollywood-mal. com.

andreas@airsoftsoftwair.de
http://www.hollywood-mal.com

3 Fundamental MUI concepts

3.1 Application tree

A MUI application consists of a (sometimes very) big object tree. The root of this tree is
always an instance of application class, called application object. This application object
handles the various communication channels such as user input through windows, ARexx
commands or commodities messages.

An application object itself would be enough to create non-GUI programs with just ARexx
and commodities capabilities. If you want to have windows with lots of nice gadgets and
other user interface stuff, you will have to add window objects to your application. Since
the application object is able to to handle any number of children, the number of windows
is not limited.

Window objects are instances of window class and handle all the actions related with open-
ing, closing, moving, resizing and refreshing of intuition windows. However, a window for
itself is not of much use without having any contents to display. That’s why window objects
always need a so called root object.

With this root object, we finally reach the gadget related classes of the MUI system. These
gadget related classes are all subclasses of Area class, they describe a rectangle region with
some class dependent contents. Many different classes such as strings, buttons, checkmarks
or listviews are available, but the most important subclass of area class is probably the
Group class. Instances of this class are able to handle any number of child objects and
control the size and position of these children with various attributes. Of course these
children can again be group objects with other sets of children. Since you usually want
your window to contain more than just one object, the root object of a window must always
be a group class object.

In MUI Royale GUIs are defined entirely using the XML markup language. Here is an
example what an application tree could look like in an XML declaration:

<?7xml version="1.0" encoding="iso-8859-1"7>
<application base="HELLOWORLD">
<window title="Example GUI" muiid="MAIN">
<vgroup>
<listview>
<column/>
</listview>
<string/>
<hgroup>
<button>Add</button>
<button>Remove</button>
</hgroup>
</vgroup>
</window>
</application>

Because these first paragraphs are very important for understanding how MUI works, here’s
a brief summary:

8 MUTI Royale manual

An application consists of exactly one application object. This application object may have
any number of children, each of them being a window object. Every window object contains
a root object that must be of type group class. This group object again handles any number
of child objects, either other group objects or some user interface elements such as strings,
sliders or buttons.

3.2 Class hierarchy

There are two important super classes that you have to know because almost all other MUI
classes are children of these two super classes: The first one is Notify class which handles
MUT’s event notification system. Notify class allows your MUI objects to listen to certain
events and trigger notifications whenever these events occur. See Section 30.1 [Notify class]
page 175, for details.

9

The second important super class is Area class. Area class is the the super class for all
MUI objects that have a visual representation in form of a gadget in a MUI window. Thus,
you can use all of Area class’ attributes on all of your MUI gadgets. For example, you can
use the Area.Width and Area.Height attributes to find out the dimensions of a listview,
texteditor, or string gadget because these are all subclasses of Area class. See Section 7.1
[Area class], page 55, for details.

3.3 Automatic layout engine

One of the most important and powerful features of MUI is its dynamic layout engine. As
opposed to other available user interface tools, the programmer of a MUI application doesn’t
have to care about gadget sizes and positions. MUI handles all necessary calculations
automatically, making every program completely screen, window size and font sensitive
without the need for the slightest programmer interaction.

From a programmer’s point of view, all you have to do is to define some rectangle areas that
shall contain the objects you want to see in your window. Objects of group class are used
for this purpose. These objects are not visible themselves, but instead tell their children
whether they should appear horizontally or vertically.

For automatic and dynamic layout, it’s important that every single object knows about its
minimum and maximum dimensions. Before opening a window, MUI asks all its gadgets
about these values and uses them to calculate the window’s extreme sizes.

Once the window is opened, layout takes place. Starting with the current window size, the
root object and all its children are placed depending on the type of their father’s group
and on some additional attributes. The algorithm ensures that objects will never become
smaller as their minimum or larger as their maximum size.

The important thing with this mechanism is that object placement depends on window
size. This allows very easy implementation of a sizing gadget: whenever the user resizes a
window, MUI simply starts a new layout process and recalculates object positions and sizes
automatically. No programmer interaction is needed.

As a consequence, you should never explicitly define fixed sizes for your windows and
your windows’ gadgets. Instead, MUI calculates these automatically depending on the
current user preferences. Although it is possible to use fixed sizes for your window using
Window.Width and Window.Height it is against MUI’s philosophy to actually use these.

Chapter 3: Fundamental MUI concepts 9

Also, the gadget counterparts Area.FixWidth and Area.FixHeight should only be used if
you have a very good reason for doing so. Normally, you should leave all layout calculation
as well as gadget and window size determination to MUI’s automatic layout engine which
will make sure to give the user the ideal visual representation of your GUI layout.

3.4 Group objects

As mentioned above, a programmer specifies a window’s design by grouping objects either
horizontally or vertically. As a little example, let’s have a look at a simple file requester
window:

woL

uoL
=1
=1
=1
=1
=1
=1
=1
=1
—

=1

This window consists of two listview objects, two string gadgets and two buttons. To tell
MUTI how these objects shall be placed, you need to define groups around them. Here, the
window consists of a vertical group that contains a horizontal group with both lists as first
child, the path gadget as second child, the file gadget as third child and again a horizontal
group with both buttons as fourth child.

In an XML file, the GUI definition of this window could then look like this:

<?7xml version="1.0" encoding="is0-8859-1"7>
<application base="FILEREQ">
<window title="File requester">
<vgroup>
<hgroup>
<listview><column/></listview>
<listview><column/></listview>

10 MUTI Royale manual

</hgroup>

<string/>

<string/>

<hgroup>
<button>0K</button>
<button>Cancel</button>

</hgroup>

</vgroup>
</window>
</application>

This XML definition is completely enough to define the contents of our window, all necessary
sizes and positions are automatically calculated by the MUI system.

To understand how these calculations work, it’s important to know that all basic objects
(e.g. strings, buttons, lists) have a fixed minimum and a maximum size. Group objects
calculate their minimum and maximum sizes from their children, depending whether they
are horizontal or vertical:

Horizontal groups:

— The minimum width of a horizontal group is the sum of all minimum widths of its

children.

— The maximum width of a horizontal group is the sum of all maximum widths of its
children.

— The minimum height of a horizontal group is the biggest minimum height of its children.

— The maximum height of a horizontal group is the smallest maximum height of its
children.

Vertical groups:

— The minimum height of a vertical group is the sum of all minimum heights of its
children.

— The maximum height of a vertical group is the sum of all maximum heights of its
children.

— The minimum width of a vertical group is the biggest minimum width of its children.

— The maximum width of a vertical group is the smallest maximum width of its children.

Maybe this algorithm sounds a little complicated, but in fact it is really straight forward and
ensures that objects will neither get smaller as their minimum nor bigger as their maximum
size.

Before a window is opened, it asks its root object (usually a group object) to calculate
minimum and maximum sizes. These sizes are used as the window’s bounding dimensions,
the smallest possible window size will result in all objects being display in their minimum
size.

Once minimum and maximum sizes are calculated, layout process starts. The root object
is told to place itself in the rectangle defined by the current window size. This window size
is either specified by the programmer or results from a window resize operation by the user.
When an object is told to layout itself, it simply sets its position and dimensions to the

Chapter 3: Fundamental MUI concepts 11

given rectangle. In case of a group object, a more or less complicated algorithm distributes
all available space between its children and tells them to layout too.

This "more or less complicated algorithm" is responsible for the object arrangement. De-
pending on some attributes of the group object (horizontal or vertical, ...) and on some
attributes of the children (minimum and maximum dimensions, ...), space is distributed
and children are placed.

A little example makes things more clear. Let’s see what happens in a window that contains
nothing but three horizontally grouped colorfield objects:

Colorfield objects have a minimum width and height of one pixel and no maximum width
and height. Since we have a horizontal group, the minmax calculation explained above yields
to a minimum width of three pixels and a minimum height of one pixel for the window’s
root object (the horizontal group containing the colorfields). Maximum dimensions of the
group are unlimited. Using these results, MUI is able to calculate the windows bounding
dimensions by adding some spacing values and window border thicknesses.

Once min and max dimensions are calculated, the window can be opened with a programmer
or user specified size. This size is the starting point for the following layout calculations.
For our little example, let’s imagine that the current window size is 100 pixels wide and 50
pixels high.

MUTI subtracts the window borders and some window inner spacing and tells the root
object to layout itself into the rectangle left=>5, top=20, width=90, height=74. Since our
root object is a horizontal group in this case, it knows that each colorfield can get the full
height of 74 pixels and that the available width of 90 pixels needs to be shared by all three
fields. Thus, the resulting fields will all get a width of 90/3=30 pixels.

That’s the basic way MUI’s layout system works. There are a lot more possibilities to influ-
ence layout, you can e.g. assign different weights to objects, define some inter object spacing
or even make two-dimensional groups. These sophisticated layout issues are discussed in
the documentation of group class.

3.5 Object handling

MUTI Royale uses XML files to create MUI objects. When creating objects you can use
all attributes marked with the letter "I" in the applicability section of the accompanying
attribute documentation. For example, to create a string object with a string-kind frame, a
maximum length of 80 and the initial contents "foobar", you would have to use the following
XML code:

<string id="mystring" frame="string" contents="foobar" maxlen="80"/>

12 MUTI Royale manual

Once your object is ready, you can start talking to it by setting or getting one of its
attributes or by sending it methods. For that purpose it is important that you give your
object an identifier using the "id" tag so that the functions mui.Set (), mui.Get() and
mui.DoMethod () can find your object. Here’s an example of talking to your string gadget:

mui.Set("mystring", "contents", "look")
s$ = mui.Get("mystring", "contents")
DebugPrint("Always " .. s$.. " on the bright side of life.")

As already mentioned above, all attributes and methods are completely documented in the
documentation coming with this distribution.

3.6 Notifications

The central element for controlling a MUI application is the notification mechanism. To
understand how it works, it’s important to know that most objects feature lots of attributes
that define their current state. Notification makes it possible to react on changes of these
attributes.

Attributes are changed either directly by the programmer (with a call to mui.Set()) or
by the user manipulation of some gadgets. If he e.g. changes the active entry of a cycle
gadget, the Cycle.Active attribute will continously be updated and reflect the currently
active entry.

If you want to be informed whenever the value of a certain object attribute changes, you
first have to setup a notification for this attribute in your object declaration. This is done
directly in the XML file by using the "Notify" tag:
<cycle id="mycycle" notify="active">
<item>One</item>
<item>Two</item>
<item>Three</item>
</cycle>
If you want to listen to multiple notifications on the same MUI object, you have to separate
them using semicolons, e.g.:

<cycle id="mycycle" notify="active; appmessage">
</cycle>
Note that you can also setup or remove notifications at run-time using the mui.Notify()

function from your code.

The next thing you have to do is setup an event handler for events from MUI Royale using
the InstallEventHandler () Hollywood function. You have to pass a Hollywood function
that shall act as an event handler to the InstallEventHandler() function. Here is an
example:

InstallEventHandler ({MUIRoyale = p_MUIHandler})

Whenever a MUI event occurs, MUI Royale will then call the event handler callback func-
tion that you passed to InstallEventHandler (). The function will receive a table as its
parameter with the following fields initialized:

Action: Initialized to "MUIRoyale".

Chapter 3: Fundamental MUI concepts 13

Class: Contains the name of the MUI class this event comes from, e.g. "Cycle".

Attribute:
Contains the name of the class attribute that has triggered the event, e.g.
"Active".

ID: Contains the ID of the MUI object that triggered this event, e.g. "mycycle".

TriggerValue:
Contains the current value of the attribute that triggered this event. You could
also find this out by doing a mui.Get () on the object but it is more convenient
to get the current value directly to your event callback.

MUIUserData:
If the object was assigned certain userdata, it will be passed to the event handler
callback in this tag. See Section 30.12 [Notify.UserDatal, page 179, for details.

NotifyData:
If the object was assigned certain notify data, it will be passed to the event
handler callback in this tag. See Section 30.10 [Notify.NotifyDatal, page 178,
for details.

3.7 Applicability

In the documentation of every object attribute you will find information about the appli-
cability of this attribute. Attribute applicability is described in the form of a combination
of the four letters I, S, G, and N. This tells you the various contexts that the attribute can
be used in.

Here is an explanation of the different applicability contexts:

I Attribute can be used when creating the object in the XML file. (initialization
time)

S Attribute can be used with mui.Set () at runtime.

G Attribute can be used with mui.Get () at runtime.

N Notifications on this attribute are possible either by using the "Notify" tag in

the XML declaration or by calling the mui.Notify() function at runtime.

For example, if an attribute has an applicability of just "I", then this attribute can only be
used during object initialization time. It cannot be changed later using mui.Set (). If an
attribute has an applicability of just "S" on the other hand, it is not possible to specify the
attribute already at initialization time in the XML file. Attributes that have an applicability
of "ISGN" can be used in all contexts.

3.8 Cycle chain

One of the big advantages of MUI is that it also offers powerful features to control your GUI
via keyboard. For this purpose you should setup a keyboard cycle chain for all your windows.
Whenever the user presses the TAB key then, the next MUI object in the keyboard cycle
chain gets activated.

14 MUTI Royale manual

All you have to do to add a MUI object to the keyboard cycle chain is setting its
Area.CycleChain attribute to True. For example, to add a listview to the keyboard cycle
chain, just do the following in your XML declaration:

<listview cyclechain="true">
<column/>
</listview>

Objects of type Button class do not need to be added to the keyboard cycle chain explicitly.
As a convenience feature, MUI Royale will add all buttons to the keyboard cycle chain
automatically. If you do not want this, you have to set Area.CycleChain to False for all
your buttons, although there is really no sound reason for doing that.

Please make sure that you always add all your MUI objects to the keyboard cycle chain
because this makes your GUI much more attractive for keyboard-only users.

3.9 Text formatting codes

MUT’s text engine is very powerful and allows you to include special character codes for
on-the-fly text formatting. For example, it is possible to specify text alignment and font
style (bold, italics, etc.) using formatting codes. With MUI 3.9 or better it is even possible
to embed images (from a Hollywood brush source) in your text objects.

Formatting codes always start with an escape character followed by a sequence of characters
that describe the formatting code. In decimal notation the escape character equals ASCII
code 27, which is 33 in octal and $1B in hexadecimal notation. Care has to be taken when
using formatting codes because usage is different between XML files and Hollywood source
files. In XML files the octal notation is used, i.e. you start an escape sequence using
a backslash and the octal number 33 ("\33’). In Hollywood source codes, however, octal
numbers are not supported after a backslash. Hollywood always expects the ASCII code in
decimal notation after a backslash. That is why you have to use '\27’ to initiate an escape
sequence from Hollywood code.

To illustrate this difference a little bit better, let us have a look at two examples. Here is
an example for creating a bold text object in an XML file. Bold text is enabled by using
the character b’ after the escape character:

<text id="mytext">\33bBold text</text>

You can see that the octal notation is used here because XML files expect an octal number
after a backslash. In Hollywood, however, it is different because Hollywood expects a
decimal character after a backslash. So here is how you have to specify escape codes when
using them from a Hollywood source file:

mui.Set("mytext", "contents", "\27bBold text")

You can see that the code is the same except that we use \27b instead of \33b because
Hollywood always uses decimal instead of octal numbers after a backslash.

The following formatting codes are currently supported:
\33u Set the soft style to underline.

\33b Set the soft style to bold.

\33i Set the soft style to italic.

Chapter 3: Fundamental MUI concepts 15

\33n Set the soft style back to normal.

\33<n> Use pen number n (2..9) as front pen. n must be a valid DrawInfo pen as
specified in intuition/screens.h.

\33P [RRGGBB]

Change front color to the specified RGB color. The RGB color has to be
specified in the form of six hexadecimal digits RRGGBB. This is only possible
on true colour screens. It also requires at least MUI 3.9.

\33P [AARRGGBB]
Change front color to the specified RGB color and apply alpha blending at
the specified intensity. The RGB color has to be specified in the form of six
hexadecimal digits RRGGBB which have to be prefaced with two alpha channel
digits AA specifying the blending intensity. This is only possible on true colour
screens. It also requires at least MUI 3.9. Due to limitations in Picasso96 this
does not work with AmigaOS 4 yet (as of AmigaOS 4.1 Update 6).

\33c Center current (and following) line(s). This sequence is only valid at the be-
ginning of a string or after a newline character.

\33r Right justify current (and following) line(s). This sequence is only valid at the
beginning of a string or after a newline character.

\331 Left justify current (and following) line(s). This sequence is only valid at the
beginning of a string or after a newline character.

\33A[s] Include the Hollywood brush that uses the identifier <s> in the text object.
This feature requires at least MUI 3.9.

\33- Disable text engine, following chars will be printed without further parsing.
\n Start a new line. With this character you can e.g. create multi line buttons.

Please note: These formatting codes can be used in all MUT strings, not only in text objects.
You can e.g. format the columns of a listview or include images in a cycle gadget’s entries.

3.10 Implementing online help

MUT provides several ways of implementing direct and immediate online help functionality
in your applications. First of all, every MUI gadget can have a bubble help functionality
that pops up after the mouse has hovered over a gadget for a user-specified interval. This
is done via the Area.ShortHelp attribute. As Area class is the super class for all MUI
gadgets, you can use this attribute to add a help text to all your gadgets. Here is an
example:
<vgroup>
<listview shorthelp="List of loaded video files">
<column/>
</listview>
<button shorthelp="Plays a video stream">Play</button>
<button shorthelp="Stops a video stream">Stop</button>
<button shorthelp="Exits the program.">Quit</button>
</vgroup>

16 MUTI Royale manual

Furthermore, you can specify an external AmigaGuide file for your application that
is opened whenever the user presses the HELP key. This is done by setting the
Application.HelpFile attribute. Here is an example:

<application helpfile="PROGDIR:MyProgram.guide">

</application>

To make your online help functionality even more convenient for the user, you can fine-
tune the access to the external AmigaGuide file by specifying which node or line of the
AmigaGuide file should be displayed when the mouse is over a specific object. This is
done by using the Notify.HelpNode or the Notify.HelpLine attributes. For example,
let’s assume that the node "VideoPlayback" should be displayed when the mouse is over
the "Play" button and the user presses the HELP key. You can write this as the following
XML code:

<button helpnode="VideoPlayback">Play</button>

Of course, your application has to define Application.HelpFile first if you want to use
Notify.HelpNode.

If your help system is not that detailed that you have an own node for every gadget and
you just have an own node for every window, then you can also use Notify.HelpNode on
window level. Like this:

<window helpnode="VideoPlayback">

</window>
Whenever that window is the active one then and the user presses HELP, MUI will automat-
ically open the AmigaGuide file specified in Application.HelpFile and display the node
specified in Notify.HelpNode. You see that MUI makes it really easy for the programmers

to implement a convenient help system in their applications. All you have to do is use it
for your own application and your end-users will surely be grateful for it.

3.11 Context menus

In MUI GUIs every gadget can have its own context menu that is automatically popped
up whenever the mouse pointer is over the gadget and the user holds down the right mouse
button. Context menus are assigned to the different gadgets by using the Area.ContextMenu
attribute. As Area class is the super-class for all MUI gadgets, you can use this attribute
with every MUI object that has a visual representation in form of a gadget.

Area.ContextMenu expects a MUI menustrip object as its argument so you have to create
a menustrip for your context menu in XML first. It is very important to note that you
have to declare your menustrips in the <application> scope because menustrips are global
objects and are only attached to windows or gadgets later on. That is why it is not allowed
to declare menustrips inside a <window> XML scope.

Here is an example in which we add a cut, copy, and paste context menu to an object of
type Texteditor class:

<menustrip id="ctxtmenu">

<menu title="Context menu">
<item>Cut</item>

Chapter 3: Fundamental MUI concepts 17

<item>Copy</item>
<item>Paste</item>
</menu>
</menustrip>

<window>
<texteditor contextmenu="ctxtmenu"/>
</window>

Please note that menustrips which are used as context menus must not contain more than
one <menu> tree.

3.12 Drag’n’drop

Unfortunately, MUI Royale currently does not support all of MUI’s drag’n’drop function-
ality. It is, however, possible to use drag’n’drop operations that come from Workbench in
the form of app messages.

If your window should be able to accept these messages, you first have to set the
Window.AppWindow attribute to True. After that you have to define which of your MUI
gadgets should accept dropped files. This is done by setting up a notification on the
Notify.AppMessage attribute for the desired gadgets. As Notify class is the super-class
for all MUI gadgets, you can use this attribute with every MUI object that has a visual
representation in form of a gadget. If you do not want to have specific gadgets as drop
targets, you can also setup your whole window as a drop target by simply setting up a
notification on the Notify.AppMessage attribute for your whole window.

Whenever the user drops an icon over your window or MUI gadget then, you will get
a notification of type AppMessage. See Section 30.2 [Notify.AppMessage|, page 175, for
details.

When your application is iconified and the user drops files on your app icon you can use
the attribute Application.DropObject to define the MUI object which should receive the
dropped file(s).

3.13 Character encoding

MUTI Royale supports two character encodings in the XML files used to describe the GUI
layout: iso-8859-1 and utf-8. If you use utf-8 encoding, MUI Royale will require
codesets.library to do character conversion from UTF-8 to the system’s default charset.

Please note that MUI itself does not support UTF-8. MUI always uses the system’s default
charset. Thus, if you use UTF-8 encoding in your XML files, MUI Royale will try to map
these strings to the system’s default charset. This may not always succeed. For example,
if the system’s default charset is ISO-8859-1 and the UTF-8 XML file uses some Eastern
European characters not present in ISO-8859-1 then they will not be displayed correctly.
They will only be displayed correctly if the system’s default charset has them as well.

18 MUTI Royale manual

3.14 Hollywood bridge

A powerful feature of MUI Royale is that it allows you to embed complete Hollywood
displays inside your MUI GUIs using Hollywood class. Whenever you draw something to
a Hollywood display that is attached to Hollywood class, it will automatically be drawn to
your MUI GUI as well. You can even hide the Hollywood display so that the user does not
even notice that Hollywood is running in the background. Furthermore, all mouse clicks
and key strokes that happen inside Hollywood class will be forwarded to the corresponding
Hollywood display as normal Hollywood events. Thus, Hollywood class allows you to use
almost all of Hollywood’s powerful features inside a MUI GUI as well.

Let’s have a look at an example. The following code uses Hollywood class to embed a
playing animation of size 320x200 inside a MUI GUI. For this, the Hollywood display’s size
is changed to 320x200 and then it is embedded in the MUI GUI using a MUI object of type
Hollywood class. Here is the XML GUI declaration first:

<?xml version="1.0" encoding="iso-8859-1"7>
<application base="HOLIBRIDGE">
<window title="Hollywood bridge" muiid="MAIN" notify="closerequest">
<vgroup>
<hgroup>
<rectangle/>
<hollywood display="1"/>
<rectangle/>
</hgroup>
<hgroup>
<button id="play" notify="pressed">Play</button>
<button id="stop" notify="pressed">Stop</button>
</hgroup>
</vgroup>
</window>
</application>

Note that we use MUI objects of Rectangle class to pad the non-resizable Hollywood object.
This is necessary for the GUI to stay resizable. Here is the code now that shows you to
connect MUI and Hollywood:

Q@ANIM 1, "amy_walks.anim"
@DISPLAY {Width = 320, Height = 200, Hidden = True}

Function p_AnimFunc()
Local numframes = GetAttribute (#ANIM, 1, #ATTRNUMFRAMES)
curframe = Wrap(curframe + 1, 1, numframes + 1)
DisplayAnimFrame(1, 0, 0, curframe)

EndFunction

Function p_EventFunc(msg)
Switch msg.Class
Case "Window":
Switch msg.Attribute

Chapter 3: Fundamental MUI concepts 19

Case "CloseRequest":
End
EndSwitch
Case "Button":
Switch msg.Attribute
Case "Pressed":
Switch msg.ID
Case "play":
SetInterval(l, p_AnimFunc, 50)
Case "stop":
ClearInterval(1l)
EndSwitch
EndSwitch
EndSwitch
EndFunction

InstallEventHandler ({MUIRoyale = p_EventFunc})
mui.CreateGUI(FileToString("GUI.xml"))

Repeat
WaitEvent
Forever

With a little bit more work we can also make the anim movable with the mouse. The user
can then click into the Hollywood object and drag the anim around using his mouse. Here
is the code for that:

O@ANIM 1, "amy_walks.anim"
ODISPLAY {Width = 320, Height = 200, Hidden = True}

Function p_AnimFunc()
Local numframes = GetAttribute (#ANIM, 1, #ATTRNUMFRAMES)
curframe = Wrap(curframe + 1, 1, numframes + 1)
SelectBrush(1)
Cls
DisplayAnimFrame(1l, offx, offy, curframe)
EndSelect
DisplayBrush(1, 0, 0)
EndFunction

Function p_MouseFunc()
If IsLeftMouse() = True
Local mx, my = MouseX(), MouseY()
If (grabx = -1) And (graby = -1) Then
grabx, graby = mx - offx, my - offy
offx = mx - grabx
offy = my - graby
Else

20 MUTI Royale manual

grabx, graby = -1, -1
EndIf
EndFunction

Function p_EventFunc(msg)
Switch msg.Class
Case "Window":
Switch msg.Attribute
Case "CloseRequest":
End
EndSwitch
Case "Button":
Switch msg.Attribute
Case "Pressed":
Switch msg.ID
Case "play":
SetInterval(l, p_AnimFunc, 50)
SetInterval(2, p_MouseFunc, 20)
Case "stop":
ClearInterval (1)
ClearInterval(2)
EndSwitch
EndSwitch
EndSwitch
EndFunction

CreateBrush(1, 320, 200)

InstallEventHandler ({MUIRoyale = p_EventFunc})
mui.CreateGUI(FileToString("GUI8.xml"))

Repeat
WaitEvent
Forever

Finally, it is also possible to make the Hollywood object resizable by specifying
the attributes Hollywood.MinWidth, Hollywood.MinHeight, Hollywood.MaxWidth,
and Hollywood.MaxHeight. Whenever the user resizes the MUI window, your
Hollywood display will receive a SizeWindow event that you can listen to using the
InstallEventHandler () Hollywood function. When using a resizable Hollywood object,
we can remove the two <rectangle> objects used solely as padding space. The XML code
looks like this then:

<?xml version="1.0" encoding="iso-8859-1"7>
<application base="HOLIBRIDGE">
<window title="Hollywood bridge" muiid="MAIN" notify="closerequest">
<vgroup>
<hollywood display="1" minwidth="32" minheight="32"

Chapter 3: Fundamental MUI concepts 21

maxwidth="16384" maxheight="16384"/>
<hgroup>
<button id="play" notify="pressed">Play</button>
<button id="stop" notify="pressed">Stop</button>
</hgroup>
</vgroup>
</window>
</application>

Note that we specify 16384 for both Hollywood.MaxWidth and Hollywood.MaxHeight. This
is to indicate that our Hollywood object doesn’t really have a maximum size. That is why
we set these two attribute to the maximum allowable size of 16384 pixels. This should be
sufficiently large enough for most purposes.

Our code is pretty much the same as before with the exception that we now have to handle
the SizeWindow event to take care of GUI resize events. Here is the adapted code from
above:

Q@ANIM 1, "amy_walks.anim"
@DISPLAY {Width = 320, Height = 200, Hidden = True}

Function p_AnimFunc()
Local numframes = GetAttribute (#ANIM, 1, #ATTRNUMFRAMES)
curframe = Wrap(curframe + 1, 1, numframes + 1)
SelectBrush(1)
Cls
DisplayAnimFrame (1, offx, offy, curframe,
{Width = swidth, Height = sheight})
EndSelect
DisplayBrush(1, 0, 0)
EndFunction

Function p_MouseFunc()
If IsLeftMouse() = True
Local mx, my = MouseX(), MouseY()
If (grabx = -1) And (graby = -1) Then
grabx, graby = mx - offx, my - offy
offx = mx - grabx
offy = my - graby
Else
grabx, graby = -1, -1
EndIf
EndFunction

Function p_EventFunc(msg)
If msg.Action = "SizeWindow"
swidth = msg.Width
sheight = msg.Height
CreateBrush(1l, swidth, sheight)

22 MUTI Royale manual

Return
EndIf

Switch msg.Class
Case "Window":
Switch msg.Attribute
Case "CloseRequest":
End
EndSwitch
Case "Button":
Switch msg.Attribute
Case "Pressed":
Switch msg.ID
Case "play":
SetInterval(l, p_AnimFunc, 50)
SetInterval(2, p_MouseFunc, 20)
Case "stop":
ClearInterval(1l)
ClearInterval(2)
EndSwitch
EndSwitch
EndSwitch
EndFunction

swidth, sheight = 320, 200
CreateBrush(1l, swidth, sheight)

InstallEventHandler ({MUIRoyale = p_EventFunc, SizeWindow = p_EventFunc})
mui.CreateGUI(FileToString("GUI8.xml"))

Repeat
WaitEvent
Forever

From this example you can see that Hollywood class is really quite powerful and can be
used to achieve lots of innovative GUI ideas only limited by your creativity. By the way,
the example above is also included in the MUI Royale distribution. You can find it in the
drawer Examples/Hollywood.

3.15 Style guide

Note: These topics aren’t discussed here just for fun. You will annoy lots of users if you
don’t pay attention to them!

File Requester:
Even if MUI features a file list and a volume list object and makes building a
private file requester very easy, you should always provide a possibility to pop up
a standard asl requester for this purpose. Just add a little popup button right

Chapter 3: Fundamental MUI concepts 23

beneath your file string gadget and everything will be fine. MUI offers a file-
popup object exactly for this purpose. Note well: Many users (including myself)
move programs with non-standard file requesters into the trashcan immediately.

Window Size:

With MUI, it’s very easy to have lots of gadgets within a single window. Since
you as a programmer usually have a more powerful system with higher graphic
resolutions as most of your users, windows tend to become too big. You should
always make sure that everything you design fits on a standard 640x256 screen
with a topaz/8 font. Otherwise, MUI will try to use very small fonts or virtual
groups to make your window fit, making your application look and feel bad.

Keyboard Control:

Even if you’re a "mouse-only" user, add keyboard cycle chains and gadget
shortcuts to your application. It’s very few work for you and helps lots of users.
See Section 3.8 [Cycle chain], page 13, for details.

Background:

MUTI allows the user to adjust lots of different backgrounds for objects. Even if
you don’t use this feature, you should always test your program with a fancy
background pattern configuration and check whether all your buttons really
have button backgrounds, all your framed texts really have text backgrounds,
etc.

Add a shortcut to MUI preferences:

And last...

Every MUI program should include a menu item that allows the user to config-
ure the appearance of the program using the MUI preferences program. This
can be done very easily by adding a menu item that simply runs the method
Application.OpenConfigWindow on the application object. Also, you should
include "About MUI" and "About MUI Royale" menu items that show the
"About MUI" and "About MUI Royale" windows which you can open using
the Application.AboutMUI and Application.AboutMUIRoyale methods re-
spectively.

Don’t forget the traditional Amiga style guide!

25

4 Tutorial

4.1 Tutorial

Welcome to the MUI Royale tutoriall This small step-by-step document will guide you
through the process of creating your first GUI with MUI Royale in very few steps.

Let us start with the basics: In MUI Royale GUISs are created using XML files that contain a
description of a number of windows containing a variety of GUI elements. Here is a minimal
GUI description for a MUI Royale GUI that contains a window with a listview, a string
gadget, and two buttons in XML format:

<?xml version="1.0" encoding="iso-8859-1"7>
<application base="HELLOWORLD">
<window title="Example GUI" muiid="MAIN">
<vgroup>
<listview>
<column/>
</listview>
<string/>
<hgroup>
<button>Add</button>
<button>Remove</button>
</hgroup>
</vgroup>
</window>
</application>

The application base is set to HELLOWORLD. It is very important that you always define
the Application.Base attribute because the string you specify in this attribute is used by

26 MUTI Royale manual

MUI to store the program-specific preferences in an external file (usually in ENV:MUI). The
<application> object is the MUI master object for every application and must only be
used once per application. All other MUI objects are children of Application class.

It is also important to set the attribute Window.MuilID for every window because only
windows that have a MUI id remember their position and size. Also, only windows that
have Window.MuiID can be snapshot by the user from the window’s context menu. Thus,
it is very important that you set this attribute for all your windows.

To see how our XML declaration above looks as a MUI GUI, we have to save it to a file
named GUI.xml and then use the following code to turn it into a full-blown MUI GUI:

O@DISPLAY {Hidden = True}
mui.CreateGUI(FileToString("GUI.xml"))

Repeat
WaitEvent
Forever

Please note that we use the @ISPLAY preprocessor command to hide the Hollywood display
that will popup by default. We do not want to have this display because we already have
a MUI GUI that shall be the visual representation of our program. Keep in mind, though,
that the Hollywood display is still there. It is just hidden. Hollywood’s conception says
that there always must be a valid display. That is why we cannot remove the Hollywood
display completely. All we can do is to hide it. You can still draw to it, though.

You should also add some information about your program using the ©APPAUTHOR,
@APPCOPYRIGHT, @APPDESCRIPTION, @APPTITLE, and @APPVERSION preprocessor commands.
MUT needs this information for several purposes, e.g. the information passed in @APPTITLE
is used by the MUI preferences window. Here is an example declaration of these
preprocessor commands:

Q@APPTITLE "Tutorial"

Q@APPVERSION "$VER: Tutorial 1.0 (27.12.12)"

Q@APPCOPYRIGHT "Copyright (2012, Andreas Falkenhahn"
@APPAUTHOR "Andreas Falkenhahn"

OAPPDESCRIPTION "The tutorial app from the MUI Royale guide"

When you run the code above you will notice that the window does not react on clicks on
its close gadget. You have to use CTRL-C or Exchange to close the program. Of course, we
want our program to be closable via the window’s close gadget as well. In order to achieve
this, we need to setup a notification on the Window.CloseRequest attribute that will be
set whenever the user hits the close gadget. We can setup this notification by modifying
our XML code from above like this:
<window title="Example GUI" muiid="MAIN" notify="closerequest">

The next thing we have to do is install an event handler callback using the
InstallEventHandler () Hollywood function because our Hollywood script needs to be
informed every time a MUI Royale event comes in. Thus, we have to modify our code as
follows:

@DISPLAY {Hidden = True}

Chapter 4: Tutorial 27

Function p_EventFunc(msg)

Switch msg.Class
Case "Window":
Switch msg.Attribute
Case "CloseRequest":
End
EndSwitch
EndSwitch

EndFunction

InstallEventHandler ({MUIRoyale = p_EventFuncl})
mui.CreateGUI(FileToString("GUI.xml"))

Repeat
WaitEvent
Forever

What we have done here is installing the function p_EventFunc as an event handler callback
that gets executed whenever a MUI Royale event comes in. When we get such an event, we
then have to check which MUI class and attribute has triggered it. This is done by looking
into the msg.Class and msg. Attribute fields of the event message that our callback receives
as its first parameter. In order to react on the Window.CloseRequest attribute, we thus
have to look for an event from class Window and attribute CloseRequest. When we have
found such an event, we simply call the End() command to terminate our program.

The next thing we want to do is add the functionality that whenever the user presses the
"Add" button the text in the string gadget should get added to the listview as the last entry.
To do this, we first have to find a way of identifying our MUI gadgets from the Hollywood
script. This is done by giving them IDs in the XML declaration. IDs are simply text strings
that are used for talking to MUI objects from Hollywood scripts. So let’s add some IDs
now for all gadgets that we need to talk to. We have to modify our XML declaration like
this:

<listview id="mylistview">
<column/>
</listview>
<string id="mystring"/>
<hgroup>
<button id="mybtl">Add</button>
<button id="mybt2">Remove</button>
</hgroup>

Now we have to setup some notifications so that our event handler callback does not
only inform us about changes in the Window.CloseRequest attribute but also in the
Button.Pressed attribute which is the attribute that gets set to True whenever the user
hits a button. To listen to these button clicks we have to modify our code like this:

28 MUTI Royale manual

<button id="mybtl" notify="pressed">Add</button>
<button id="mybt2" notify="pressed">Remove</button>

Now that we have done this we can add some code to our event handler callback that grabs
the contents of the string gadget and adds it to the end of the list in our listview object. This
is done by first calling mui.Get () on the String.Contents attribute to get the contents of
the string gadget and then running the method Listview.Insert on the listview gadget
using mui.DoMethod () to insert the entry into the listview. Here is the code that has to be
inserted into p_EventFunc for this purpose:

Switch msg.Class

Case "Button":
Switch msg.Attribute
Case "Pressed":
Switch msg.ID

Case "mybtl": ; "Add" button was pressed
Local s$ = mui.Get("mystring", "contents")
mui.DoMethod ("mylistview", "insert", "bottom", s$)
EndSwitch
EndSwitch
EndSwitch

The next thing we want to do is implement the functionality of our "Remove" button.
Whenever this button is pressed, we want the active entry to be removed from the listview.
We can do this by running the Listview.Remove method on the listview. Hence, we have
to modify our code like this:

Switch msg.ID

Case "mybt2": ; "Remove" button was pressed

mui.DoMethod("mylistview", "remove", "active")
EndSwitch

Now we want the active entry of the listview to be automatically displayed in the string
gadget. For this purpose we have to setup a notification on the Listview.Active attribute
which is triggered whenever the active entry of the listview changes. Thus, we have to
modify our XML file like this:

<listview id="mylistview" notify="active">
<column/>
</listview>

In our event handler callback we can implement this functionality quite easily by running
the Listview.GetEntry method and then setting the string gadgets contents using the
String.Contents attribute. Here is the code for doing that:

Switch msg.Class

Chapter 4: Tutorial 29

Case "Listview":
Switch msg.Attribute
Case "Active":
Local s$ = mui.DoMethod("mylistview", "getentry", "active")
mui.Set("mystring", "contents", s$)
EndSwitch
EndSwitch

If you try this code, you will set that the Listview.Active attribute is not only triggered
when the user selects a new listview entry with his mouse, but also when entries are removed
from the listview and thus cause a new entry becoming the active one.

The next thing we want to do is disable the "Remove" button when there is no active entry
in the listview. We can disable MUI gadgets by setting the Area.Disabled attribute to
True. As there are no entries in the listview initially, we have to set Area.Disabled to
True already at the start of our program. So you have to insert this code:

mui.CreateGUI(FileToString("GUI.xml"))
mui.Set ("mybt2", "disabled", True)

Now we have to make some modifications to our event handler callback. Whenever we get
the notification on Listview.Active we have to check if it is different from the special value
"Off". If that is the case, we will enable the "Remove" gadget. The special value "Off"
(-1) is returned by Listview.Active whenever there is no active entry in the listview. We
have to modify our code like this:

Switch msg.Class

Case "Listview":
Switch msg.Attribute
Case "Active":
Local s$ = mui.DoMethod("mylistview", "getentry", "active")
mui.Set("mystring", "contents", s$)
mui.Set ("mybt2", "disabled", IIf(msg.triggervalue = -1,
True, False))
EndSwitch
EndSwitch

We use the field msg.TriggerValue here. This always contains the current value of the
attribute that has triggered the event, i.e. in our case it contains the current value of the
Listview.Active attribute. We could also call mui.Get () manually on Listview.Active
first, but this is not really required because we can simply use the msg.TriggerValue
shortcut.

The last thing we want to do is add a menu to our GUI. All MUI programs should have
a menu item that allows the user to customize the program’s appearance using the MUI
preferences. This is done by running the Application.OpenConfigWindow method on the
application object. Also, every MUI program should have the menu items "About MUI"
and "About MUI Royale" that inform the user that this program was done using MUI and
MUI Royale. You can popup the these windows by running the Application.AboutMUI

30 MUTI Royale manual

and Application.AboutMUIRoyale methods on the application object respectively. To add
these menus to our program, we use the Menustrip class. Here is the XML code that you
have to add before your window declaration:

<application base="HELLOWORLD">
<menustrip id="mymenustrip">
<menu title="Project">
<item id="menabout" notify="selected">About...</item>
<item id="menaboutmui" notify="selected">About MUI...</item>
<item id="menaboutmuiroyale" notify="selected">
About MUI Royale...</item>
<item/>
<item id="menquit" notify="selected" shortcut="Q">Quit</item>
</menu>
<menu title="Settings">
<item id="menmuiset" notify="selected">MUI...</item>
</menu>
</menustrip>

</application>
After we have created our menustrip object using the XML code above we have to attach

this menustrip to our window. This is done by setting the Window.Menustrip attribute to
our menustrip object. Here is the XML code for this:

<window title="Example GUI" muiid="MAIN" notify="closerequest"
menustrip="mymenustrip">

As you can see in the XML code above, we have already added notifications on the
Menuitem.Selected attribute to get informed whenever the user selects a menu item. Now
we have to add code to our event handler function that takes the appropriate action when
a menu item is selected. Before we can do that, however, we need to assign an ID to our
application object because we need to use mui.DoMethod() on it. Here is how the XML
code needs to be adapted:

<application base="HELLOWORLD" id="app">
Now we can write the code for our event handler callback function that handles menu items:

Switch msg.Class

Case "Menuitem":
Switch msg.Attribute
Case "Selected":
Switch msg.id
Case "menabout":
mui.Request("Test", "Test program\n"
"(© 2012 by Andreas Falkenhahn", "OK")
Case "menaboutmui':
mui.DoMethod("app", "aboutmui")
Case "menaboutmuiroyale":

Chapter 4: Tutorial 31

mui.DoMethod("app", "aboutmuiroyale")
Case "menquit":
End
Case "menmuiset":
mui.DoMethod("app", "openconfigwindow")
EndSwitch
EndSwitch
EndSwitch

Some final touches to our program could be adding online help to our gadgets by using the
Area.ShortHelp attribute and adding all objects to the keyboard cycle chain so that the
GUI can also be controlled via keyboard. We do not have to add the buttons to our keyboard
cycle chain, because this is always done automatically. We have to add the listview and the
string gadgets manually, though. Adding objects to the keyboard cycle chain is done by
using the Area.CycleChain attribute. Also, it is advised that you listen to the ShowWindow
and HideWindow events that can come from the Exchange program in Commodities and act
accordingly. So here is how our final program looks like with these two last enhancements
applied. First the XML file:

<?xml version="1.0" encoding="iso-8859-1"7>
<application base="HELLOWORLD" id="app">
<menustrip id="mymenustrip">
<menu title="Project">
<item id="menabout" notify="selected">About...</item>
<item id="menaboutmui" notify="selected">About MUI...</item>
<item id="menaboutmuiroyale" notify="selected">
About MUI Royale...</item>
<item/>
<item id="menquit" notify="selected" shortcut="Q">Quit</item>
</menu>
<menu title="Settings">
<item id="menmuiset" notify="selected">MUI...</item>
</menu>
</menustrip>
<window title="Example GUI" muiid="MAIN" notify="closerequest"
menustrip="mymenustrip">
<vgroup>
<listview id="mylistview" notify="active" shorthelp="A listview"
cyclechain="true">
<column/>
</listview>
<string id="mystring" shorthelp="Enter entry name here"
cyclechain="true"/>
<hgroup>
<button id="mybtl" notify="pressed"
shorthelp="Add new entry">Add</button>
<button id="mybt2" notify="pressed"
shorthelp="Remove entry">Remove</button>

32 MUTI Royale manual

</hgroup>
</vgroup>
</window>
</application>

And here is the code for the program logic:
@DISPLAY {Hidden = True}

Q@APPTITLE "Tutorial"

O@APPVERSION "$VER: Tutorial 1.0 (27.12.12)"

@APPCOPYRIGHT "Copyright (2012, Andreas Falkenhahn"
Q@APPAUTHOR "Andreas Falkenhahn"

O@APPDESCRIPTION "The tutorial app from the MUI Royale guide"

Function p_EventFunc(msg)
If msg.Action <> "MUIRoyale"

Switch msg.Action
Case "HideWindow":

mui.Set("app", "iconified", True)
Case "ShowWindow":

mui.Set("app", "iconified", False)
EndSwitch

Return
EndIf

Switch msg.Class
Case "Window":
Switch msg.Attribute
Case "CloseRequest":
End
EndSwitch

Case "Button":
Switch msg.Attribute
Case "Pressed":
Switch msg.ID

Case "mybtl": ; "Add" button was pressed
Local s$ = mui.Get("mystring", "contents")
mui.DoMethod("mylistview", "insert", "bottom", s$)
Case "mybt2": ; "Remove" button was pressed
mui.DoMethod("mylistview", "remove", "active")
EndSwitch

EndSwitch

33

Case "Listview":
Switch msg.Attribute
Case "Active":
Local s$ = mui.DoMethod("mylistview", "getentry", "active")
mui.Set("mystring", "contents", s$)
mui.Set("mybt2", "disabled", IIf(msg.triggervalue = -1,
True, False))
EndSwitch

Case "Menuitem":
Switch msg.Attribute
Case "Selected":
Switch msg.id
Case "menabout":
mui.Request("Test", "Test program\n"
"(© 2012 by Andreas Falkenhahn", "OK")
Case "menaboutmui":
mui.DoMethod("app", "aboutmui")
Case "menaboutmuiroyale":
mui.DoMethod("app", "aboutmuiroyale")
Case "menquit":
End
Case "menmuiset":
mui.DoMethod("app", "openconfigwindow")
EndSwitch
EndSwitch
EndSwitch

EndFunction

InstallEventHandler ({MUIRoyale = p_EventFunc, HideWindow = p_EventFunc,
ShowWindow = p_EventFunc})

mui.CreateGUI(FileToString ("GUI.xml1"))

mui.Set("mybt2", "disabled", True)

Repeat
WaitEvent
Forever

That’s it! Now you should be able to create MUI programs to your personal taste. Thank
you for reading this tutorial and enjoy the power of MUI with Hollywood and MUI Royale
at your hands!

35

5 Function reference

5.1 mui.CreateGUI

NAME

mui.CreateGUI — create application object from an XML source
SYNOPSIS

mui.CreateGUI (xml$)
FUNCTION

This function creates a MUI GUI from the XML description passed in the xml$ argument,
i.e. it establishes the MUI master application object with all of its children. Please note
that xml$ must be a string that contains the XML GUI declaration and not a filename.
If you want to use an XML GUI declaration from an external file, you have to convert
that file into a string first, e.g. using the FileToString() Hollywood function.

Once this function returns, you can talk to all your MUI objects that you have defined
in the XML GUI declaration using the mui.Set(), mui.Get() and mui.DoMethod()
functions.

Please note that there can be only one application object per task so this function can
only be called once. If you want to call mui.CreateGUI() a second time, you have to
free the old GUI first using the mui.FreeGUI() call.

If you need to dynamically add objects like windows or buttons to your application
object, you can use the mui.CreateObject () function to do this.

INPUTS
xml$ a string containing an XML GUI description

EXAMPLE
mui.CreateGUI([[
<?7xml version="1.0" encoding="iso-8859-1"7>
<application>
<window title="Test program" notify="closerequest">
<vgroup>
<button>Hello World!</button>
</vgroup>
</window>
</application>

1D

InstallEventHandler ({MUIRoyale = Function(msg)
If msg.attribute = "CloseRequest" Then End
EndFunction})

Repeat
WaitEvent
Forever

36 MUTI Royale manual

The code above creates a minimal GUI, just with a window and a single button.

5.2 mui.CreateObject

NAME

mui.CreateObject — create MUI object from an XML source (V1.2)
SYNOPSIS

mui.CreateObject (xml$)
FUNCTION

This function can be used to dynamically create a MUI object from an XML source.
When mui.CreateObject () returns, the newly created MUI object won’t be attached to
any parent object and will live in a state of isolation from your application object created
by mui.CreateGUI(). Thus, to break this state of isolation you first have to attach the
object to a parent object which can be either a group object, a menu object, or an
application object. If your newly allocated MUI object is a window object, you will have
to to attach it to the application object by using the Application.AddWindow method.
To attach menu objects you have to use the Menustrip.AddHead, Menustrip.AddTail,
Menustrip.Insert, Menu.AddHead, Menu.AddTail, or Menu. Insert methods. All other
objects can be attached by using the group methods Group.AddHead, Group.AddTail
and Group. Insert,

In contrast to mui.CreateGUI() you can call mui.CreateObject() as often as you like
as it doesn’t create an application object for you but just detached MUI objects of which
you can have as many as you like.

It is important that you specify an ID for your MUI object in the XML declaration
because you need this ID to refer to this object when you want to add it to an application
or group object.

Once this function returns, you can talk to the newly created MUI object (and to all of
its children) using the mui.Set (), mui.Get() and mui.DoMethod () functions.

Detached MUI objects can be freed using the mui.FreeObject () function but you only

have to call this in specific cases, e.g. if you are dealing with lots of dynamically allocated
MUTI objects and you want to do some housekeeping to save on memory and resources.

INPUTS
xml$ a string containing an XML MUI object description

EXAMPLE
mui.CreateObject ([[
<window id="newwindow" title="A new window" notify="closerequest">
<vgroup>
<button>Hello World!</button>
</vgroup>
</window>

1D

mui.DoMethod ("app", "addwindow", "newwindow")

Chapter 5: Function reference 37

mui.Set("newwindow", "open", True)

The code above creates a new window, adds it to the existing application object and
opens it.

mui.CreateObject ([[
<button id="newbutton">Dynamically created button!</button>

1D

mui.DoMethod ("mygroup", "initchange")
mui.DoMethod ("mygroup", "addtail", "newbutton")
mui.DoMethod ("mygroup", "exitchange", false)

The code above dynamically creates a new button object and adds it as the last child to
the group that has the ID "mygroup".

5.3 mui.DoMethod

NAME

mui.DoMethod — run method on MUI object
SYNOPSIS

r = mui.DoMethod(id$, method$, ...)
FUNCTION

This function can be used to run a method on the specified MUI object. You have to
pass the identifier of the MUI object in the first argument and the name of the method
in the second argument. Method and object IDs are case insensitive, i.e. it does not
matter if you use upper or lower case characters.

The methods that you can use with this function depend on the class of the specified
MUI object. Have a look at the class reference to see what methods are supported by
the different MUI classes.

Also, the arguments that you have to pass to this function after the method name depend
on the method. They are different for every method. The same is true for return values.
Some methods return values, some do not. Please refer to the class reference to see which
arguments your method requires and whether there are return values for your method.

INPUTS
id$ identifier of MUI object to run method on

method$ method name as a string

additional arguments depend on the method (see class reference for details)

RESULTS

r return value depends on method type

EXAMPLE

mui.DoMethod("my_listview", "insert", "bottom", "Last entry")

38 MUTI Royale manual

The code above adds a new entry named "Last entry" to the bottom of the listview using
the identifier "my _listview". This is done by running the Listview.Insert() method
on the listview object.

5.4 mui.FreeGUI

NAME
mui.FreeGUI — delete entire application object

SYNOPSIS
mui.FreeGUI()

FUNCTION
Use this call to delete the entire GUI object created using the last call to
mui.CreateGUI(). mui.FreeGUI() will delete the whole MUI master application
object. All windows will be closed and their children will be deleted. After this call
returns, you could create a new GUI using the mui.CreateGUI() function if you want.

INPUTS
none

5.5 mui.Freelmage

NAME

mui.Freelmage — free brush in image cache (V1.7)
SYNOPSIS

mui.FreeImage (id)
FUNCTION

This function can be used to free a brush in MUI Royale’s internal image cache. You
have to pass the identifier of the brush that should be freed. Alternatively, you can also
pass -1 to this function to free all brushes in MUI Royale’s internal image cache.

You must make sure that the specified brush is no longer used by any widgets in your
GUI before you call this function. Note that under normal conditions it is not necessary
to call this function because normally all brushes are freed automatically by MUI Royale.
Under certain conditions, however, it can be useful to call this function.

MUTI Royale caches all Hollywood brushes that you use as images in your GUI. That
is why when you try to use a Hollywood brush in your GUI a second time, it will just
be loaded from MUI Royale’s internal image cache for performance reasons, regardless
of the brush’s current contents inside Hollywood. This can lead to unwanted behaviour
in case you have updated your brush’s graphics in the meantime and you want MUI
Royale to use the updated graphics. In that case, you first have to free the brush in
MUTI Royale’s internal image cache by using this function. When you pass the brush to
MUTI Royale again then, it will be re-created from the brush’s current state and it will
be cached anew.

Chapter 5: Function reference 39

INPUTS

id identifier of brush to free or -1 to free all brushes

5.6 mui.FreeObject

NAME

mui.FreeObject — delete a detached MUI object (V1.2)
SYNOPSIS

mui.FreeObject (id$)
FUNCTION

This function can be used to delete a detached MUT object that has been created either by
mui.CreateObject () or mui.CreateGUI(). The MUI object that you specify here must
not be attached to an application, group, or menu object any longer because attached
MUT objects are freed with their parent so make sure you only use this function with
MUT objects that have been detached from their parent and are no longer bound to any
parent object.

To detach MUI objects from their respective parents, you have to use one of the
following methods: Application.RemoveWindow, Menustrip.Remove, Menu.Remove or
Group.Remove.

When MUI Royale exits, it will automatically free all detached MUI objects so unless
your program constantly adds and removes MUI objects at runtime, you will normally
not have to call this function at all.

INPUTS
id$ identifier of MUI object to free

5.7 mui.Get

NAME

mui.Get — get value of a MUI object attribute
SYNOPSIS

r = mui.Get(id$, attr$)
FUNCTION

This function can be used to retrieve the current value of the attribute attr$ in the MUI
object specified in id$. Attribute names and object IDs are case insensitive, i.e. it does
not matter if you use upper or lower case characters for them.

The attributes that you can use with this function depend on the class of the specified
MUT object. Have a look at the class reference to see what attributes are supported by
the different MUI classes. In order to use an attribute with this function, it needs to
have an applicability of "G". Attributes of Area class and Notify class can be used on
almost all other classes because the Area and Notify classes act as superclasses for most
of the other classes.

40 MUTI Royale manual

INPUTS

id$ identifier of MUI object to query

attr$ attribute whose value should be retrieved
RESULTS

r current attribute value
EXAMPLE

DebugPrint (mui.Get("my_listview", "active"))

The code above returns the index of the currently active entry in the listview that has
the identifier "my_listview" by querying the Listview.Active attribute.

5.8 mui.HaveObject

NAME

mui.HaveObject — check if MUI object exists (V1.7)
SYNOPSIS

r = mui.HaveObject (id$)
FUNCTION

This function simply checks whether a MUI object of the given id$ exists or not. If it
exists, True is returned, False otherwise.

INPUTS
id$ MUTI object id to check
RESULTS
r True or False depending on whether the object exists

5.9 mui.IsVersion4

NAME

mui.IsVersion4 — check if MUI 4 or better is installed (V1.2)
SYNOPSIS

r = mui.IsVersion4()
FUNCTION

This function can be used to check whether the user is running MUI 4.0 and up. As
some features of MUI Royale are only available on MUI 4, it might be necessary to use
this function to check whether they are available before you try to use them.

INPUTS
none

RESULTS

r returns True if MUI 4 or better is available

Chapter 5: Function reference 41

5.10 mui.Notify

NAME

mui.Notify — add/remove notification on a MUI object attribute
SYNOPSIS

mui.Notify(id$, attr$, enable)
FUNCTION

This function can be used to add or remove a notification on the attribute attr$ in the
MUT object specified in id$. You have to pass the attribute name and a boolean flag that
indicates whether you want to enable or disable notifications on that attribute. Attribute
names and object IDs are case insensitive, i.e. it does not matter if you use upper or
lower case characters for them.

The attributes that you can use with this function depend on the class of the specified
MUI object. Have a look at the class reference to see what attributes are supported by
the different MUI classes. In order to use an attribute with this function, it needs to
have an applicability of "N". Attributes of Area class and Notify class can be used on
almost all other classes because the Area and Notify classes act as superclasses for most
of the other classes.

Once you have setup a notification on a certain object attribute, you can listen
to these events by installing a MUI Royale event handler callback using the
InstallEventHandler () Hollywood function. See Section 3.6 [Notifications|, page 12,
for details.

Please note that notifications can also be setup in the XML GUI declaration by using
the Notify tag. See Section 3.6 [Notifications|, page 12, for details.

INPUTS

id$ identifier of MUI object to use

attr$ attribute to listen to

enable True to add a notification or False to remove notification from this object
EXAMPLE

mui.Notify("my_listview", "active", True)
The code above installs a notification that triggers whenever the Listview.Active at-
tribute changes in the listview that has the identifier "my_listview".

5.11 mui.Request

NAME

mui.Request — popup a MUI system requester
SYNOPSIS

r = mui.Request(title$, body$, gadgets$[, icon$])
FUNCTION

This function pops up a standard MUI requester that displays a message (body$) and
also allows the user to make a selection using one of the gadgets specified by gadgets$.

42 MUTI Royale manual

Using a MUI requester instead of a standard system requester offers you the possibility
to include text containing all the text engine format codes.

Separate the gadgets specified in gadgets$ by a "|". The return value tells you which
gadget the user pressed. Please note that the right most gadget always has the value of
False (0) because it is typically used as the "Cancel" gadget. If you have for example
three gadget choices "One| Two| Three", the gadget "Three" has return value 0, "Two"
returns 2, and "One" returns 1.

If you precede an entry with a '* in gadgets$, this answer will become the active ob-
ject. Pressing <Return> will terminate the requester with this response. A ’_’ character
indicates the keyboard shortcut for this response.

The strings you specify in body$ and gadgets$ can use text formatting codes. See
Section 3.9 [Text formatting codes]|, page 14, for details.

Starting with MUI Royale 1.4 this function accepts an optional argument named icon$.
This allows you to specify the icon to show in the requester window. Note that this
is currently only supported by MUI 4 and up on AmigaOS 3 and AmigaOS 4. The
MorphOS MUI doesn’t support this feature yet. The following predefined values are
accepted for icon$:

"None": no icon

"Information":
an information sign

"Error": an error sign

"Warning":
a warning sign

"Question":
a question mark

INPUTS
title$ title for the requester; pass an empty string ("") to use the default title
body$ text to appear in the body of the requester
gadgets$ one or more gadgets that the user can press
icon$ optional: icon to show in the requester (defaults to "Information") (V1.4)

RESULTS
r the gadget that was pressed by the user

EXAMPLE
mui.Request ("MUI Royale", "\027c\027b\027uHello!\n\n"
"\027nDo you like MUI Royale!", "*_Yes|_No")

The code above demonstrates the use of the mui.Request () function.

Chapter 5: Function reference 43

5.12 mui.Set

NAME

mui.Set — set value of a MUI object attribute
SYNOPSIS

mui.Set(id$, attril$, valil$, ...)
FUNCTION

This function can be used to set the current value of one or more attributes in the MUI
object specified in id$. You have to pass the attribute name and desired new value for
every attribute you want to modify. You can repeat these attribute/value pairs as often
as you like to modify multiple attributes with just a single call to mui.Set (). Attribute
names and object IDs are case insensitive, i.e. it does not matter if you use upper or
lower case characters for them.

The attributes that you can use with this function depend on the class of the specified
MUT object. Have a look at the class reference to see what attributes are supported by
the different MUI classes. In order to use an attribute with this function, it needs to
have an applicability of "S". Attributes of Area class and Notify class can be used on
almost all other classes because the Area and Notify classes act as superclasses for most
of the other classes.

If you have setup a notification on the attribute that you want to modify using this
function, the notification will be triggered once you call mui.Set () on that attribute. If
you do not want this behaviour, you can use the Notify.NoNotify attribute to prevent
a notification from being issued.

INPUTS
id$ identifier of MUI object to modify
attril$ attribute whose value should be modified
vall$ new value for the attribute
you can repeat attribute/value pairs as often as you like
EXAMPLE

mui.Set("my_listview", "active", 15)

The code above sets entry number 15 as currently active entry in the listview that has
the identifier "my_listview" by setting the Listview.Active attribute.

mui.Set("my_listview", "nonotify", True, "active", 15)

This code does the same as the code above but prevents notifications from being issued
by setting the Notify.NoNotify attribute to True. This is useful if you need to distin-
guish between user selections in the listview and selections made programmatically using
mui.Set().

45

6 Application class

6.1 Overview

Application class is the master class for all MUI applications. It serves as a kind of anchor
for all input, either coming from the user or somewhere from the system, e.g. commodities
or ARexx messages.

An application can have any number of sub windows, these windows are the children of the
application. Every GUI definition has to start with the application class.

6.2 Application.AboutMUI

NAME

Application.AboutMUI — show the MUI about window
SYNOPSIS

mui.DoMethod(id, "AboutMUI")
FUNCTION

Show the MUI about window. Please include that in all your applications and link with
a menu item called "About MUIL...".

INPUTS
id id of the application object

6.3 Application.AboutMUIRoyale

NAME

Application.AboutMUIRoyale — show the MUI Royale about window
SYNOPSIS

mui.DoMethod(id, "AboutMUIRoyale")
FUNCTION

Show the MUI Royale about window. Please include that in all your applications and
link with a menu item called "About MUI Royale...".

INPUTS
id id of the application object

6.4 Application.AddWindow

NAME
Application.AddWindow — add detached window object to application object (V1.2)

SYNOPSIS
mui.DoMethod(id, "AddWindow", window)

46 MUTI Royale manual

FUNCTION
This method can be used to add a detached window object to the application object.
Once the window object has been attached to the application object, you can open the
window by setting its Window.Open attribute.

Detached window objects can be created either by calling the mui.CreateObject()
function or by explicitly detaching them from their parent by using the
Application.RemoveWindow method.

INPUTS
id id of the application object
window id of the window object to add
EXAMPLE

See Section 5.2 [mui.CreateObject], page 36.

6.5 Application.Base

NAME
Application.Base — set/get basename of an application

FUNCTION
The basename for an application. This name is used for the builtin ARexx port and for
some internal file management.
A basename must neither contain spaces nor any special characters such as ":/()#7*...".
When your program is a single task application (i.e. Application.SingleTask is True),
the base name will be used without further modification.

Otherwise, it gets a ".1", ".2" etc. appended, depending on how many applications are
already running. If you need to know the name of your ARexx port, you can query the
base name attribute after the application is created.

TYPE
String

APPLICABILITY
1G

6.6 Application.ConfigChange

NAME
Application.ConfigChange — get notified about configuration changes (V1.2)

FUNCTION
This attribute will trigger whenever the user changes the configuration of your applica-
tion. Be warned that this can trigger quite often because it will be set for every single
thing the user changes.

This is only supported on MUI 4.x.

Chapter 6: Application class 47

TYPE
Boolean

APPLICABILITY
N

6.7 Application.DoubleStart

NAME
Application.DoubleStart — get notified about double start of application

FUNCTION
This attribute is set automatically when the user tries to start an application that has
the attribute Application.SingleTask set twice. You can react on this and take ap-
propriate actions, e.g. pop up a requester or quit yourself.

TYPE
Boolean

APPLICABILITY
GN

6.8 Application.DropObject

NAME
Application.DropObject — set default drop object

FUNCTION
If your application is iconified and the user drops icons onto the Applcon, the object
specified here will receive the Notify.AppMessage notification.

TYPE
String

APPLICABILITY
IS

6.9 Application.HelpFile

NAME
Application.HelpFile — set/get help file of application

FUNCTION
This attribute allows defining an AmigaGuide style file to be displayed when the user
requests online help.
When the HELP button is pressed and the application defines a Application.HelpFile,

MUI tries to obtain Notify.HelpNode from the current object (the one under the mouse
pointer). If Notify.HelpNode is not defined, MUI continues asking the parent object

48 MUTI Royale manual

for this attribute (usually a group, but remember: the parent of a windows root object
is the window itself, the parent of a window is the application).

When an Notify.HelpNode is found, the same procedure is applied to Notify.HelpLine.
Then MUI puts the application to sleep and displays the file at the position specified
with Notify.HelpNode and/or Notify.HelpLine.

This behaviour allows you to define one Application.HelpFile for your application
object and different help nodes and lines for your applications windows and/or gadgets.

See Section 3.10 [Implementing online help|, page 15, for details.

TYPE
String

APPLICABILITY
ISG

6.10 Application.Icon

NAME
Application.Icon — set application icon

FUNCTION
If you specify the path to an icon file here, MUI will use this object for the Applcon when
your application gets iconified. Otherwise MUI will try to locate env:sys/dev_mui.info
and, if not present, fall back to a default icon.

TYPE
String

APPLICABILITY
I

6.11 Application.Iconified

NAME
Application.Iconified — (un)iconify application

FUNCTION
Setting this attribute to True causes the application to become iconified. Every open
window will be closed and a (configurable) Applcon will appear on the workbench.

Same thing happens when the user hits the iconify gadget in the window border or uses
commodities Exchange to hide your applications interface.

When an application is iconified and you try to open a window, the window won’t
open immediately. Instead MUI remembers this action and opens the window once the
application is uniconified again.

TYPE
Boolean

Chapter 6: Application class 49

APPLICABILITY
SG

6.12 Application.Load

NAME

Application.Load — load program configuration (V1.7)
SYNOPSIS

mui.DoMethod(id, "Load", name$)
FUNCTION

Application.Save, Application.Load and Notify.ExportID offer an easy way of sav-
ing and loading a program’s configuration.

Fach gadget with a Notify.ExportID will get its contents saved during
Application.Save and restored during Application.Load. This makes it very easy
to design a configuration window with "Save", "Use" and "Cancel" buttons to allow
the user storing the settings. When the application starts, you would just have to call
Application.Load and the stored settings will be read and installed.

The name$ parameter must be set to the name of the file you wish to load the settings
from. Usually you won’t need to think of a real name but instead use one of the following
special values:

: :ENV Load settings from ENV:.
::ENVARC Load settings from ENVARC:.

Not all classes are able to import and export their contents. Currently, you may define
a Notify.ExportID for

String class
String.Contents is ex/imported.

Radio class
Radio.Active is ex/imported.

Cycle class
Cycle.Active is ex/imported.

Listview class
Listview.Active is /ex/imported.

Text class
Text.Contents is ex/imported.

Slider class
Slider.Level is ex/imported.

Area class
Area.Selected is ex/imported (e.g. for Checkmark gadgets)

Menuitem class
Menuitem.Selected is ex/imported.

50 MUTI Royale manual

Group class
Group.ActivePage is ex/imported.

INPUTS
id id of the application object
name$ name of the file you wish to load the settings from or special value (see

above)

6.13 Application.Menustrip

NAME
Application.Menustrip — set menustrip for the entire application

FUNCTION
Specify a menu strip object for the application. Menustrip objects defined for the ap-
plication are used as menu for every window of the application, as long as the window
doesn’t define its private menu.

You have to pass the identifier of a menustrip from the Menustrip MUI class here.

TYPE
MUTI object

APPLICABILITY
1

6.14 Application.OpenConfigWindow

NAME
Application.OpenConfigWindow — show MUI preferences window

SYNOPSIS
mui.DoMethod(id, "OpenConfigWindow")

FUNCTION
Since MUI 3, applications can open their own MUI configuration window to allow
users to adjust the local preferences without the need of an external program. Pro-
grammers are supposed to include a "Settings/MUI..." menu item which simply calls
Application.OpenConfigWindow. MUI will then automatically show the preferences
window without blocking the rest of the program.

INPUTS
id id of the application object

Chapter 6: Application class 51

6.15 Application.RemoveWindow

NAME

Application.RemoveWindow — detach window object from application object (V1.2)
SYNOPSIS

mui.DoMethod(id, "RemoveWindow", window)
FUNCTION

This method removes the specified window object from the application object and puts
the window object in detached state. Window objects in detached state can either be
reattached by running the Application.AddWindow method or can be freed by calling
mui.FreeObject ().

INPUTS
id id of the application object
window id of the window object to remove

6.16 Application.Save

NAME

Application.Save — save program configuration (V1.7)
SYNOPSIS

mui.DoMethod(id, "Save", name$)
FUNCTION

Application.Save, Application.Load and Notify.ExportID offer an easy way of sav-
ing and loading a program’s configuration.

Fach gadget with a Notify.ExportID will get its contents saved during
Application.Save and restored during Application.Load. This makes it very easy
to design a configuration window with "Save", "Use" and "Cancel" buttons to allow
the user storing the settings. When the application starts, you would just have to call
Application.Load and the stored settings will be read and installed.

The name$ parameter must be set to the name of the file you wish to save the settings
to. Usually you won’t need to think of a real name but instead use one of the following
special values:

::ENV Save settings to ENV:.
::ENVARC Save settings to ENVARC:.

Not all classes are able to import and export their contents. Currently, you may define
a Notify.ExportID for

String class
String.Contents is ex/imported.

Radio class
Radio.Active is ex/imported.

52 MUTI Royale manual

Cycle class
Cycle.Active is ex/imported.

Listview class
Listview.Active is /ex/imported.

Text class
Text.Contents is ex/imported.

Slider class
Slider.Level is ex/imported.

Area class
Area.Selected is ex/imported (e.g. for Checkmark gadgets)

Menuitem class
Menuitem.Selected is ex/imported.

Group class
Group.ActivePage is ex/imported.

INPUTS
id id of the application object
name$ name of the file you wish to save the settings to or special value (see above)

6.17 Application.SingleTask

NAME
Application.SingleTask — set operation mode of application

FUNCTION
Boolean value to indicate whether or not your application is a single task program. When
set to True, MUI will refuse to create more than one application object.

In this case, the already running application gets its Application.DoubleStart at-
tribute set to True. You can listen to this and take appropriate actions, e.g. pop up a
requester.

Examples for single task applications are the system preferences program. It doesn’t
make sense for them to run more than once.

TYPE
Boolean

APPLICABILITY
I

6.18 Application.Sleep

NAME
Application.Sleep — put application to sleep

Chapter 6: Application class 53

FUNCTION
This attribute can be used to put a whole application to sleep. All open windows get
disabled and a busy pointer appears.

This attribute contains a nesting count, if you tell your application to sleep twice, you
will have to tell it to wake up twice too.

If you need to do some time consuming actions, you always should set this attribute to
inform the user that you are currently unable to handle input.

A sleeping application’s windows cannot be resized.

TYPE
Boolean

APPLICABILITY
S

6.19 Application.WindowList

NAME
Application. WindowList — get a list of all application windows (V1.2)

FUNCTION
This attribute allows you to get a table that contains the identifiers of all windows that
are currently attached to the application object.

TYPE
Table

APPLICABILITY
G

95

7 Area class

7.1 Overview

Area class is a super class for every other MUI class except windows and applications. It
holds information about an object’s current position, size and weight and manages frames,
fonts and backgrounds.

Because Area class is the super class for every MUI gadget, you can use all of its attributes
with all other MUT classes that create gadgets. For example, you can use Area.ShortHelp
to add bubble help to a button, or you could use Area.ContextMenu to add a context menu
to a listview, etc.

7.2 Area.Background

NAME
Area.Background — adjust background of an object

FUNCTION
Adjust the background for an object.

Every MUI object has its own background setting. The background is displayed "behind"
the actual object contents, e.g. behind a the text of a text object or behind the image
of an image object.

An object without a specific background setting will inherit the pattern from its parent
group. The default background for a window and many other background patterns are
adjustable with the preferences program.

The following background settings are possible:
— WindowBack
— RequesterBack
— ButtonBack

— ListBack

— TextBack

— PropBack

— PopupBack

— SelectedBack
— RegisterBack
— GroupBack

— SliderBack

— PageBack

— ReadListBack
— pre_Background
— pre_Shadow

— pre_Shine

56

MUTI Royale manual

— pre_Fill

— pre_ShadowBack

— pre_ShadowFill

— pre_ShadowShine

— pre_FillBack

— pre_FillShine

— pre_ShineBack

— pre_FillBack?2

— pre_HshineBack

— pre_HshadowBack

— pre_HshineShine

— pre_HshadowShadow

— pre_MarkShine

— pre_MarkHalfshine

— pre_MarkBackground

All backgrounds with "pre" are MUI’s predefined patterns. These are not configurable
by the user and will always look the same.

Note: It is *important® that you test your programs with a fancy pattern configuration.
With the default setting you won’t notice any errors in your backgrounds.

TYPE

String (see above for possible values)

APPLICABILITY

IS

7.3 Area.BackgroundBrush
NAME

Area.BackgroundBrush — set background to a MUI brush (V1.5)

FUNCTION

Uses the specified MUI brush as the background for the object. You must pass the name
of an external MUI brush to this attribute.

Every MUI object has its own background setting. The background is displayed "behind"
the actual object contents, e.g. behind a the text of a text object or behind the image
of an image object.

An object without a specific background setting will inherit the pattern from its parent
group. The default background for a window and many other background patterns are
adjustable with the preferences program.

Please note that it is generally not a good idea to change the background to a hard-coded
image because this can easily clash with the user’s current skin settings. Remember that
everything in MUI is user-configurable so you should not override these settings by
defining your own skins.

Chapter 7: Area class 57

TYPE
String

APPLICABILITY
IS

7.4 Area.BackgroundImage

NAME
Area.Backgroundlmage — set background to an image (V1.2)

FUNCTION
Uses the specified image as the background for the object. You must pass a filename to
an image in this attribute. The image is then loaded via datatypes.

Every MUI object has its own background setting. The background is displayed "behind"
the actual object contents, e.g. behind a the text of a text object or behind the image
of an image object.

An object without a specific background setting will inherit the pattern from its parent
group. The default background for a window and many other background patterns are
adjustable with the preferences program.

Please note that it is generally not a good idea to change the background to a hard-coded
image because this can easily clash with the user’s current skin settings. Remember that
everything in MUI is user-configurable so you should not override these settings by
defining your own skins.

TYPE
String

APPLICABILITY
IS

7.5 Area.BackgroundRGB

NAME
Area.BackgroundRGB — set background to an RGB color (V1.2)

FUNCTION
Sets the background of this object to the specified RGB color.

Every MUI object has its own background setting. The background is displayed "behind"
the actual object contents, e.g. behind a the text of a text object or behind the image
of an image object.

An object without a specific background setting will inherit the pattern from its parent
group. The default background for a window and many other background patterns are
adjustable with the preferences program.

Please note that it is generally not a good idea to change the background to a hard-coded
color value because this can easily clash with the user’s current skin settings. Remember

58 MUTI Royale manual

that everything in MUI is user-configurable so you should not override these settings by
defining your own color schemes.

From the Hollywood script the color is specified as a simple numerical value containing
8 bits for each component. When you specify the color in the XML file, it has to be
passed as a 6 character string prefixed by the #-character (just like in HTML).

TYPE
Number

APPLICABILITY
IS

7.6 Area.BottomEdge

NAME
Area.BottomEdge — get bottom edge of object

FUNCTION
You can use this to read the current position and dimension of an object, if you e.g. need
it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is currently
open.

TYPE
Number

APPLICABILITY
G

7.7 Area.ContextMenu

NAME
Area.ContextMenu — set context menu for object

FUNCTION
Specifies a context sensitive popup menu for the current object. For MUI, popup menus
are nothing else but standard intuition menus, so you must specify the id of a MUI
menustrip object here.

Whenever the user hits the RMB and the mouse is above the parent object, MUI will
present the popup menu instead of the windows menu.

Please note that menustrips which are used as context menus must not contain more
than one <menu> tree.

In MUI Royale 1.0 this attribute could only be used at initialization stage. Starting with
MUTI Royale 1.1 it has an applicability of "IS" which means that you can also change
context menus at runtime. To remove a context menu completely, pass the special string
"(none)" to this attribute.

See Section 29.1 [Menustrip class], page 171, for an example.

Chapter 7: Area class 59

TYPE
MUT object

APPLICABILITY
IS

7.8 Area.ContextMenuTrigger

NAME
Area.ContextMenuTrigger — react on context menu events

FUNCTION
This notification will return the id of the context menu item that the user has selected.

TYPE
String

APPLICABILITY
N

7.9 Area.ControlChar

NAME
Area.ControlChar — set shortcut for object

FUNCTION
Pressing the control char will have the same effect as pressing return if the object was
active.

This can be used to create old style key shortcuts.
Note: Using an uppercase control char will force the user to press shift.

TYPE
Single character string

APPLICABILITY
ISG

7.10 Area.CycleChain

NAME
Area.CycleChain — set/get cycle chain flag

FUNCTION
MUI 3 introduces a new keyboard cycle chain system. All you have to do is to set
Area.CycleChain to True for every object that you want to have in your chain, MUI
does the rest automatically.

See Section 3.8 [Cycle chain], page 13, for details.

60 MUTI Royale manual

TYPE
Boolean

APPLICABILITY
ISG

7.11 Area.Disabled

NAME
Area.Disabled — set/get disabled state

FUNCTION
Disable or enable a gadget. Setting this attribute causes a gadget to become disabled,
it gets a ghost pattern and doesn’t respond to user input any longer.

Disabled gadgets cannot be activated with the TAB key.
Using Area.Disabled on a group of objects will disable all objects within that group.

TYPE
Boolean

APPLICABILITY
ISG

7.12 Area.FixHeight

NAME
Area.FixHeight — fix size of object

FUNCTION
Give your object a fixed pixel height. This tag is absolutely not needed in a general MUI
application and only present for emergency situations. Please think twice before using
it!

TYPE
Number

APPLICABILITY
I

7.13 Area.FixHeightTxt

NAME
Area.FixHeight Txt — fix size of object

FUNCTION
Give your object a fixed pixel height. The height will match the height of the given
string. This tag is absolutely not needed in a general MUI application and only present
for emergency situations. Please think twice before using it!

Chapter 7: Area class 61

TYPE
String

APPLICABILITY
I

7.14 Area.FixWidth

NAME
Area.FixWidth — fix size of object

FUNCTION
Give your object a fixed pixel width. This tag is absolutely not needed in a general MUI
application and only present for emergency situations. Please think twice before using
it!

TYPE

Number

APPLICABILITY
I

7.15 Area.FixWidthTxt

NAME
Area.FixWidthTxt — fix size of object

FUNCTION
Give your object a fixed pixel width. The width will match the width of the given
string. This tag is absolutely not needed in a general MUI application and only present
for emergency situations. Please think twice before using it!

TYPE
String

APPLICABILITY
I

7.16 Area.Font

NAME
Area.Font — adjust object font

FUNCTION
Every MUI object can have its own font, just set it with this tag. Objects without an
explicit font setting will inherit it from their parent group.
You normally won’t need to open a font yourself, just use one of the predefined values
to get a font from the users preferences.

62

The

TYPE

MUTI Royale manual

following fonts are possible:
Inherit

Normal

List

Tiny

Fixed

Title

Big

Button

String (see above for possible values)

APPLICABILITY

IG

7.17
NAME

Area.Frame

Area.Frame — define object frame

FUNCTION
Define a frame for the current object. Since area class is a superclass for all elements in
a window, you can assign frames to every object you wish.

You

don’t adjust the style of your frame directly, instead you only specify a type:

None For no frame.

Button For standard buttons with text in it.

ImageButton

For small buttons with images, e.g. the arrows of a scrollbar.

Text For a text field, e.g. a status line display.

String For a string gadget.

ReadList For a read only list.

Inputlist
For a list that handles input (has a cursor).
Prop For proportional gadgets.
Gauge For gauge gadgets.
Group For groups.
PopUp For popup gadgets.

Virtual For virtual groups.

Slider For slider gadgets.

Chapter 7: Area class 63

How the frame is going to look is adjustable via the preferences program.

Four spacing values belong to each frame that tell MUI how many pixels should be left
free between the frame and its contents. These spacing values are also user adjustable
as long as you don’t override them with one of Area.InnerLeft, Area.InnerRight,
Area.InnerTop, or Area.InnerBottom.

Note: The first object in a window may *not* have a frame. If you need this you will
have to create a dummy group with just one child.

TYPE
String (see above for possible values)

APPLICABILITY
1

7.18 Area.FramePhantomHoriz

NAME
Area.FramePhantomHoriz — make a phantom frame

FUNCTION
Setting this to True causes the specified frame to be a horizontal phantom frame. The
frame will not appear but its vertical components (frame height, inner top and inner bot-
tom spacing) will be used to calculate positions and dimensions (horizontal components
are treated as 0).

This is extremely useful for a correct labeling of objects. You would e.g. label a string
gadget by using a text object with a phantom string frame. Thus, the label text will be
always on the same vertical position as the string gadget text, no matter what spacing
values the user configured.

TYPE
Boolean

APPLICABILITY
I

7.19 Area.FrameTitle

NAME
Area.FrameTitle — set frame title

FUNCTION
This tag identifies a text string that will be displayed centered in the top line of a frame.
This can become handy if you want to name groups of objects.

You may not use Area.FrameTitle without defining a Area.Frame.

TYPE
String

64 MUTI Royale manual

APPLICABILITY
I

7.20 Area.Height

NAME
Area.Height — get height of object

FUNCTION
You can use this to read the current position and dimension of an object, if you e.g. need
it to pop up some requester below.

Of course, this attribute is only valid when the parent window of the object is currently
open.

TYPE
Number

APPLICABILITY
G

7.21 Area.Hide

NAME
Area.Hide — show /hide object

FUNCTION
Objects with this attribute set are not displayed. You can set Area.Hide at any time,
causing objects to appear and to disappear immediately. A new layout is calculated
whenever some objects are shown or hidden. When necessary, MUI will resize the parent
window to make place for the new objects.
Currently, MUI does a complete window refresh after showing/hiding objects. This
behaviour might get improved in the future.

TYPE
Boolean

APPLICABILITY
ISG

7.22 Area.HorizWeight

NAME
Area.HorizWeight — set/get horizontal object weight

FUNCTION
Adjust the horizontal weight of an object. Usually you can simply use Area.Weight
instead of this tag but in some two-dimensional groups it may become handy to have
different horizontal and vertical weights.

Chapter 7: Area class 65

TYPE
Number

APPLICABILITY
ISG

7.23 Area.InnerBottom

NAME
Area.InnerBottom — adjust space between object and frame

FUNCTION
Adjust the space between an object and its frame. Usually you shouldn’t use this tag
since you will override the users preferred default setting.

TYPE
Number

APPLICABILITY
IG

7.24 Area.InnerLeft

NAME
Area.InnerLeft — adjust space between object and frame

FUNCTION
Adjust the space between an object and its frame. Usually you shouldn’t use this tag
since you will override the users preferred default setting.

TYPE
Number

APPLICABILITY
IG

7.25 Area.InnerRight

NAME
Area.InnerRight — adjust space between object and frame

FUNCTION
Adjust the space between an object and its frame. Usually you shouldn’t use this tag
since you will override the users preferred default setting.

TYPE
Number

APPLICABILITY
IG

66 MUTI Royale manual

7.26 Area.InnerTop

NAME
Area.InnerTop — adjust space between object and frame

FUNCTION
Adjust the space between an object and its frame. Usually you shouldn’t use this tag
since you will override the users preferred default setting.

TYPE
Number

APPLICABILITY
IG

7.27 Area.InputMode

NAME
Area.InputMode — adjust input mode of object (V1.5)

FUNCTION
Adjust the input mode for an object.

MUTI has no distinct button class. Instead you can make every object (even groups)
behave like a button by setting an input mode for them. Several input modes area
available:

None: No input, this is not a gadget.

RelVerify:
For buttons and similar stuff.

Immediate:
Used e.g. in a radio button object.

Toggle: For things like checkmark gadgets.

The input mode setting determines how a user action will trigger the attributes
Area.Selected and Area.Pressed. See their documentation for details.

TYPE
String (see above for possible values)

APPLICABILITY
1

7.28 Area.LeftEdge

NAME
Area.LeftEdge — get left edge of object

Chapter 7: Area class 67

FUNCTION
You can use this to read the current position and dimension of an object, if you e.g. need
it to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently
open.

TYPE
Number

APPLICABILITY
G

7.29 Area.MaxHeight

NAME
Area.MaxHeight — set maximum height of object

FUNCTION
Specify a maximum height for an object (in pixels).

TYPE
Number

APPLICABILITY
I

7.30 Area.MaxWidth

NAME
Area.MaxWidth — set maximum width of object

FUNCTION
Specify a maximum width for an object (in pixels).

TYPE
Number

APPLICABILITY
I

7.31 Area.Pressed

NAME
Area.Pressed — learn if button is pressed (V1.5)

FUNCTION
Learn if a button is pressed (or released). The Area.Pressed attribute of a gadget is
triggered by some user action, depending on the input mode:

68 MUTI Royale manual

RelVerify:
Set when lmb is pressed. Cleared when Imb is released and the mouse is still
over the gadget (otherwise it will be cleared too, but without triggering a
notification event).

Immediate:
Undefined, use Area.Selected for this.

Toggle: Undefined, use Area.Selected for this.
Waiting for Area.Pressed getting False is the usual way to react on button gadgets.

TYPE
Boolean

APPLICABILITY
N

7.32 Area.RightEdge

NAME
Area.RightEdge — get right edge of object

FUNCTION
You can use this to read the current position and dimension of an object, if you e.g. need
it to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently
open.

TYPE
Number

APPLICABILITY
G

7.33 Area.Selected

NAME
Area.Selected — set/get selected state of a gadget (V1.5)

FUNCTION
Get and set the selected state of a gadget. This attribute can be triggered by the user
clicking on the gadget (or using the keyboard), depending on the input mode:

RelVerify:
Set when lmb is pressed. Cleared when lmb is released. Cleared when the
gadget is selected and the mouse leaves the gadget box. Set when the mouse
reenters the gadget box.

Immediate:
Set when lmb is pressed.

Chapter 7: Area class 69

Toggle: Toggled when lmb is pressed.

Of course you may set this attribute yourself, e.g. to adjust the state of a checkmark
gadget.

A selected gadget will display its border reverse and get the configured SelectedBack
background. This can be avoided using the Area.ShowSelState tag.

TYPE

Boolean

APPLICABILITY
ISGN

7.34 Area.ShortHelp

NAME
Area.ShortHelp — set/get bubble help string

FUNCTION
Specify a string that is to be used as bubble help for this object.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes|, page 14, for details.

TYPE
String

APPLICABILITY
ISG

7.35 Area.ShowSelState

NAME
Area.ShowSelState — configure background mode (V1.5)

FUNCTION
Normally a gadget will reverse its frame and display the configured SelectedBack back-
ground pattern in its selected state. For some objects (e.g. checkmarks) this is not
recommended and can be supressed by setting Area.ShowSelState to False.

TYPE

Boolean

APPLICABILITY
I

70 MUTI Royale manual

7.36 Area.TopEdge

NAME
Area.TopEdge — get top edge of object

FUNCTION
You can use this to read the current position and dimension of an object, if you e.g. need
it to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently
open.

TYPE
Number

APPLICABILITY
G

7.37 Area.VertWeight

NAME
Area.VertWeight — set/get vertical object weight

FUNCTION
Adjust the vertical weight of an object. Usually you can simply use Area.Weight instead
of this tag but in some two-dimensional groups it may become handy to have different
horizontal and vertical weights.

TYPE
Number

APPLICABILITY
ISG

7.38 Area.Weight

NAME
Area.Weight — set object weight

FUNCTION
This tag is a shorthand for Area.HorizWeight and Area.VertWeight, it sets both
weights at once.

The weight of an object determines how much room it will get during the layout process.
Imagine you have a 100 pixel wide horizontal group with two string gadgets. Usually,
each gadget will get half of the room and be 50 pixels wide. If you feel the left gadget is
more important and should be bigger, you can give it a weight of 200 (and 100 for the
right gadget). Because the left gadget is twice as "heavy" as the right gadget, it will
become twice as big (about 66 pixel) as the right one (34 pixel).

Of course giving weights only makes sense if the object is resizable. A Area.VertWeight
for a (always fixed height) string gadget is useless.

Chapter 7: Area class 71

An object with a weight of 0 will always stay at its minimum size.
By default, all objects have a weight of 100.

TYPE
Number

APPLICABILITY
I

7.39 Area.Width

NAME
Area.Width — get width of object

FUNCTION
You can use this to read the current position and dimension of an object, if you e.g. need
it to pop up some requester below.
Of course, this attribute is only valid when the parent window of the object is currently
open.

TYPE
Number

APPLICABILITY
G

73

8 Busy class

8.1 Overview

Busy class creates an indefinite progress indicator gadget. This is useful if you need to
indicate a busy state without knowing when processing will be finished. For a linear progress
indicator, take a look at Gauge class instead. See Section 16.1 [Gauge class|, page 97, for
details.

This class requires at least MUI Royale 1.4.

8.2 Busy.Move

NAME

Busy.Move — move the busy object (V1.4)
SYNOPSIS

mui.DoMethod(id, "Move")
FUNCTION

Moves the busy object.
INPUTS

id id of the busy object

8.3 Busy.Speed

NAME
Busy.Speed — set/get animation speed (V1.4)

FUNCTION
Setting this attribute will trigger the speed of the moving busy bar. Valid value range
is 1 to 250 (milliseconds).

Additionally, there are the following special values:
Off Stop the busy bar.
User Use the user defined speed from the preferences.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISG

75

9 Button class

9.1 Overview

Button class allows you to create buttons very easily. If the button label contains an
underscore, MUI Royale will automatically set up the character following this underscore
as a keyboard shortcut. If you don’t want this behaviour, set Button.NoAutoKey to True.

Example:
<button id="ok" notify="pressed">0K</button>

The button name you specify here can use text formatting codes. See Section 3.9 [Text
formatting codes], page 14, for details.

)

9.2 Button.HiChar

NAME
Button.HiChar — highlight a character in button label

FUNCTION
If the character given here exists in the displayed string (no matter if upper or lower
case), it will be underlined. Highlighting a character in the button label is useful in
connection with Area.ControlChar.

TYPE
Single character string

APPLICABILITY
I

9.3 Button.Label

NAME
Button.Label — set/get button label

FUNCTION
Set or get the button’s label using this attribute.
The string you specify here can use text formatting codes. See Section 3.9 [Text format-

ting codes|, page 14, for details.

TYPE
String

APPLICABILITY
SG

76 MUTI Royale manual

9.4 Button.NoAutoKey

NAME
Button.NoAutoKey — disable auto button shortcut

FUNCTION
If the button label contains an underscore, MUI Royale will automatically set up the
character following this underscore as a keyboard shortcut by default. I.e. if the but-
ton label is "_OK", then "o" will automatically become the keyboard shortcut for this
button. If you don’t want this behaviour, set this attribute to True.

Defaults to False.

TYPE
Boolean

APPLICABILITY
I

9.5 Button.Pressed

NAME

Button.Pressed — learn if a button is pressed

FUNCTION
This attribute is triggered if the user presses the button.

TYPE
Boolean

APPLICABILITY
N

9.6 Button.Selected

NAME
Button.Selected — toggle selection state

FUNCTION
Use this to toggle the selection state of a toggle button or get notified of a user toggle
event. If you want to use this attribute, you have to set Button.Toggle to True first.

TYPE
Boolean

APPLICABILITY
ISGN

Chapter 9: Button class 77

9.7 Button.Toggle

NAME
Button.Toggle — create toggle button

FUNCTION
If you set this to True, the button will be a toggle button that can have two states: On
and off. You can use the Button.Selected attribute to toggle states and get notified
about user toggle events.

By default, the button will be a normal button.

TYPE
Boolean

APPLICABILITY
I

79

10 Checkmark class

10.1 Overview

Checkmark class creates an image button with a checkmark that can have two different
states. It is often used to toggle options. This class really just creates the checkmark
button. It does not put a label next to it. If you want to have a label for your checkmark,
you need to do this manually by placing a text or label object next to the checkmark.

Here is an example of how to create a checkmark with an adjacent label:
<hgroup>
<label>Enable cool option</label>

<checkmark/>
</hgroup>

10.2 Checkmark.Selected

NAME
Checkmark.Selected — set/get checkmark state

FUNCTION
Get and set the selected state of a checkmark. This attribute can be triggered by the
user clicking on the gadget or using the keyboard. Of course you may set this attribute
yourself, e.g. to adjust the state of a checkmark gadget.
You can also set up a notification on this attribute to learn when the user toggles the
checkmark state.

TYPE
Boolean

APPLICABILITY
ISGN

81

11 Coloradjust class

11.1 Overview

Coloradjust class creates some gadgets that allow adjusting a single color. Depending on
the operating system, different kinds of gadgets are be used. Kickstart 2.x users might
only receive an RGB slider triple, Kickstart 3.x users could get an additional colorwheel if
available. However, the outfit of this class is not important for you as a programmer.

Here is an example XML excerpt for creating a coloradjust gadget set to all white:
<coloradjust rgb="#ffffff"/>

11.2 Coloradjust.RGB

NAME
Coloradjust. RGB — set/get color

FUNCTION
Set or get the adjusted color. If you set up a notification on this attribute, you will be
notified whenever the color changes. From the Hollywood script the color is specified
as a simple numerical value containing 8 bits for each component. When you specify
the color in the XML file, it has to be passed as a 6 character string prefixed by the
#-character (just like in HTML).

TYPE
Number

APPLICABILITY
ISGN

83

12 Colorfield class

12.1 Overview

Colorfield class creates a rectangle filled with a specific color, useful e.g. within a palette
requester. You can change the color of the field at any time by setting its RGB attributes.
The field will try to obtain an exclusive pen on the current screen. When none is available,
it just displays some kind of rastered background. Maybe it will get a little more intelligent
and try to display the color by mixing together some other colors, but that’s a future topic.
Needless to say that Colorfield only works with Kickstart 3.x and above, since lower oper-
ating systems don’t support pen sharing. When using this class with a lower OS, you will
also get some kind of (boring) raster.

Here is an example XML excerpt for creating a colorfield gadget set to all white:

<colorfield rgb="#ffffff"/>

12.2 Colorfield.RGB

NAME
Colorfield. RGB - set/get color

FUNCTION
Set or get the current color. If you set up a notification on this attribute, you will be
notified whenever the color changes. From the Hollywood script the color is specified
as a simple numerical value containing 8 bits for each component. When you specify
the color in the XML file, it has to be passed as a 6 character string prefixed by the
#-character (just like in HTML).

TYPE
Number

APPLICABILITY
ISGN

85

13 Cycle class

13.1 Overview
Cycle class generates the well known cycle gadgets. However, MUI cycle gadgets feature a
(configurable) popup menu to avoid clicking through many entries.

When you declare a cycle gadget, you have to use the <item> tag to fill the cycle gadget
with items. Every cycle gadget needs to have at least one item.
Here is an example XML excerpt for creating a cycle gadget:
<cycle id="printer">
<item>HP Deskjet</item>
<item>NEC P6</item>
<item>Okimate 20</item>
</cycle>

The cycle entries that you specify using the <item> tag can use text formatting codes. See
Section 3.9 [Text formatting codes]|, page 14, for details.

13.2 Cycle.Active

NAME
Cycle.Active — set/get active cycle item

FUNCTION
This attributes defines the number of the active entry in the cycle gadgets. Valid range
is from 0 for the first entry to NumEntries-1 for the last.

Setting Cycle.Active causes the gadget to be updated. On the other hand, when the
user plays around with the gadget, Cycle.Active will always reflects the current state.

Passing the special values Next or Prev during set causes the gadget to cycle through
its entries in the given direction.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISGN

87

14 Dirlist class

14.1 Overview

Dirlist class provides a quick and easy way of showing entries in a directory. It features lots
of control attributes, many of them known from the popular asl file requester.

This class is *not* intended to replace asl.library! Nobody wants to see every MUI appli-
cation coming with another selfmade file requester. Please continue using ASL for real file
requesting purposes!

However, sometimes it may be useful to have a little directory list placed somewhere in
your user interface. Imagine an answering machine tool that stores incoming calls in a
preconfigured directory. Using a dirlist object, you can include the GUI for selecting a call
in your window with lots of other gadgets like "Play", "Delete", etc.

Dirlist class creates a listview with six columns representing all files attributes: Name, size,
date, time, flags and comment. If you do not want to have all of these attributes displayed,
you can use Listviewcolumn class to make adjustments.

Dirlist class is a subclass of listview class. Thus, you can use most attributes and methods
of listview class on it too. For example, if you want to read the entries of your directory, just
send the dirlist object a Listview.GetEntry method, or if you want to listen to changes in
the active list entry, set up a notification on Listview.Active.

If you use Listview.GetEntry on this class, you will get six return values representing
the six different columns of the dirlist listview. Note that you will always get six return
values even if you made adjustments to the column display using Listviewcolumn class. The
protection flags are returned as a single number containing a bitfield combination of the
#FILEATTR_XXX constants from Hollywood.
When creating a dirlist object in XML code, you always have to add at least one column to
it. This is done by using the Listviewcolumn class. Here is an example of a minimal dirlist
declaration with just a single column (the name column, that is):

<dirlist>

<column/> <!-- Name -->
</dirlist>

Here is a declaration that includes all six columns:

<dirlist>
<column/> <!-- Name -->
<column/> <!-- Size -—>
<column/> <!-- Date -->
<column/> <!-- Time -->
<column/> <!-- Flags -->
<column/> <!-- Comment -->

</dirlist>

If you only want to have the name column and the comment column displayed, you can use
the Listviewcolumn.Col attribute to achieve this:
<dirlist>
<column/> <!-- Name -->

88

<column
</dirlist>

C01="5"/>

<1--

To reverse the order of columns use:

<dirlist>
<column
<column
<column
<column
<column
<column

</dirlist>

col="5"/>
Col=ll4"/>
col="3"/>
col="2"/>
col="1"/>
col="0"/>

<M==
<I--
<!--
<!--
<t--
<!--

MUTI Royale manual

Comment -->

Comment -->

Flags -->
Time -->
Date —-—>
Size -—>
Name -->

See Section 25.1 [Listview class], page 143, for details.

See Section 26.1 [Listviewcolumn class], page 159, for details.

14.2 Dirlist.AcceptPattern

NAME

Dirlist. AcceptPattern — set filter pattern

FUNCTION

Set a filter pattern specified in the AmigaDOS pattern format. Entries not matching

this pattern are
TYPE
String

APPLICABILITY
IS

14.3 Dirlist.Directory

NAME

rejected.

Dirlist.Directory — set/get active directory

FUNCTION

Set a new directory for the dirlist object. Since reading a directory can take a long long
time, MUI delegates this work to a sub task.

Setting this attribute causes the object to clear the current directory (if any) and start
loading a new one. Dirlist.Status will be set to Reading and the sub task will be

launched.

By listening to Dirlist.Status, you can learn if the directory reading is completed or
if something went wrong.

Passing the empty string here ("") just clears the current directory and sets

Dirlist.Status to Invalid.
Defaults to SYS:

TYPE
String

Chapter 14: Dirlist class 89

APPLICABILITY
ISG

14.4 Dirlist.DrawersOnly

NAME
Dirlist.DrawersOnly — indicate whether you want only drawers displayed

FUNCTION
Indicate whether you only want drawers to be displayed.

TYPE
Boolean

APPLICABILITY
IS

14.5 Dirlist.FilesOnly

NAME
Dirlist.FilesOnly — indicate whether you want only files displayed

FUNCTION
Indicate whether you only want files to be displayed.

TYPE
Boolean

APPLICABILITY
IS

14.6 Dirlist.FilterDrawers

NAME
Dirlist.FilterDrawers — apply pattern matching to drawers too

FUNCTION
Indicate whether you want drawers matched agains Dirlist.RejectPattern and
Dirlist.AcceptPattern.

Defaults to False.
TYPE

Boolean

APPLICABILITY
IS

90 MUTI Royale manual

14.7 Dirlist.MultiSelDirs

NAME
Dirlist.MultiSelDirs — allow multiple selection of directories

FUNCTION
Allows multi selection of directories.
Defaults to False.

TYPE
Boolean

APPLICABILITY
IS

14.8 Dirlist. NumBytes

NAME
Dirlist. NumBytes — get number of bytes in directory

FUNCTION
When Dirlist.Status is Valid, you can obtain the number of bytes occupied by the
directory from this tag.

TYPE
Number

APPLICABILITY
G

14.9 Dirlist.NumDrawers

NAME
Dirlist. NumDrawers — get number of drawers in directory

FUNCTION
When Dirlist.Status is Valid, you can obtain the number of drawers in the displayed
directory from this tag.

TYPE
Number

APPLICABILITY
G

Chapter 14: Dirlist class 91

14.10 Dirlist.NumPF'iles

NAME
Dirlist.NumFiles — get number of files in directory

FUNCTION
When Dirlist.Status is Valid, you can obtain the number of files in the displayed
directory from this tag.

TYPE

Number

APPLICABILITY
G

14.11 Dirlist.Path

NAME
Dirlist.Path — get full path of active entry

FUNCTION
When Dirlist.Status is Valid and you have an active entry in the list
(Listview.Active not equal 0ff), you will receive a pointer to the complete path
specification of the selected file. Otherwise you get an empty string.

TYPE
String

APPLICABILITY
G

14.12 Dirlist.RejectIcons

NAME
Dirlist.RejectIcons — indicate whether to reject icons

FUNCTION
Indicate whether you want icons (*.info files) to be rejected.

TYPE
Boolean

APPLICABILITY
IS

92 MUTI Royale manual

14.13 Dirlist.RejectPattern

NAME
Dirlist.RejectPattern — set filter pattern

FUNCTION
Set a filter pattern specified in the AmigaDOS pattern format. Entries matching this
pattern are rejected.

TYPE
String

APPLICABILITY
IS

14.14 Dirlist.ReRead

NAME
Dirlist.ReRead — refresh dirlist object
SYNOPSIS
mui.DoMethod(id, "ReRead")
FUNCTION
Force the dirlist object to reread the current directory.
INPUTS
id id of the dirlist object

14.15 Dirlist.SortDirs

NAME
Dirlist.SortDirs — set where directories shall be displayed

FUNCTION
Adjust the place where directories shall be displayed.

The following values are possible:

First Display directories at the top.

Last Display directories at the bottom.

Mix Interleave directory and file display.
TYPE

String (see above for possible values)
APPLICABILITY

IS

Chapter 14: Dirlist class

14.16 Dirlist.SortHighLow

NAME
Dirlist.SortHighLLow — reverse sorting mode

FUNCTION
Indicate if you want to sort your directory reversely.

TYPE

Boolean

APPLICABILITY
IS

14.17 Dirlist.SortType

NAME
Dirlist.Sort Type — indicate sorting criteria

FUNCTION
Indicate what fields should be used as sort criteria.
The following values are possible:

Name Sort by name.

Date Sort by date.

Size Sort by size.
TYPE

String (see above for possible values)
APPLICABILITY

IS

14.18 Dirlist.Status
NAME
Dirlist.Status — get status of dirlist object

FUNCTION
Read the status of the dirlist object. The result is one of

Invalid Object contains no valid directory.
Reading Object is currently reading a new directory.

Valid Object contains a valid directory.
TYPE

String (see above for possible values)

APPLICABILITY
GN

94 MUTI Royale manual

14.19 Dirlist.Title

NAME
Dirlist. Title — show /hide list title

FUNCTION
Specify whether you want to have title bar for the listview. The title is displayed at the
very first line and doesn’t scroll away when the list top position moves.

TYPE
Boolean

APPLICABILITY
ISG

95

15 Floattext class

15.1 Overview

Floattext class is a class that takes a big text string as input and splits it up into several
lines to be dislayed. Formatting capabilities include paragraphs and justified text with word
wrap.

Here is an example of how to use the <floattext> command:
<floattext>Hello World</floattext>

Here is the same example in bold:
<floattext>\33bHello World</floattext>

The string you specify here can use text formatting codes. See Section 3.9 [Text formatting
codes], page 14, for details.

15.2 Floattext.Justify

NAME
Floattext.Justify — set text alignment

FUNCTION
Indicate whether you want your the text aligned to the left and right border. MUI will
try to insert spaces between words to reach this goal.

TYPE
Boolean

APPLICABILITY
ISG

15.3 Floattext.TabSize

NAME
Floattext.TabSize — adjust tab size

FUNCTION
Adjust the tab size for a text. The tab size is measured in spaces, so if you plan to use
tabs not only at the beginning of a paragraph, you should consider using the fixed width
font.

Tab size defaults to 8.

TYPE
Number

APPLICABILITY
IS

96 MUTI Royale manual

15.4 Floattext.Text

NAME
Floattext.Text — set/get contents of floattext object

FUNCTION
String of characters to be displayed as floattext. This string may contain linefeeds to
mark the end of paragraphs or tab characters for indention.

MUT will automatically format the text according to the width of the floattext object.
If a word won’t fit into the current line, it will be wrapped.

If you plan to use tabs not only at the beginning of a line you should consider using the
configured fixed width font.

Please note that justification and word wrap with proportional fonts is a complicated
operation and may take a considerable amount of time, especially with long texts on
slow machines.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes|, page 14, for details.

TYPE
String

APPLICABILITY
SG

97

16 Gauge class

16.1 Overview
A gauge object is a nice looking display element useful for some kind of progress display. It
is often used together with Scale class to create nice progress bars.
Here is an example XML declaration:
<vgroup>
<gauge horiz="true" infotext="...%ld %% completed..."/>

<scale/>
</vgroup>

16.2 Gauge.Current

NAME
Gauge.Current — set/get current level

FUNCTION
Set the current level of the gauge. The value must be between 0 and Gauge . Max.

TYPE
Number

APPLICABILITY
ISGN

16.3 Gauge.Divide

NAME
Gauge.Divide — set divisor

FUNCTION
If this attribute is not 0, every value set with Gauge.Current will be divided by this
before further processing.

TYPE
Number

APPLICABILITY
ISG

16.4 Gauge.Horiz
NAME
Gauge.Horiz — set gauge alignment

FUNCTION
Determine if you want a horizontal or vertical gauge. Default to False.

98

MUTI Royale manual

TYPE

Boolean

APPLICABILITY

I

16.5 Gauge.InfoText
NAME

Gauge.InfoText — set/get gauge info text

FUNCTION

The text given here is displayed within a gauge object and is usually intended to show
some kind of percentage information.

This texts preparse is set to "\33c\0338", this makes it appear centered and highlighted
by default.

Any %l1d will be replaced with the current value of Gauge.Current.

Note that if you want to have a single percent character (%) you need to escape it
using another percent character (%%) because the single percent character is used as a
wildcard character.

Note: Up to V18 of gauge.mui, InfoText worked only for horizontal gauges. If you intend
to use and change info text, you should specify an empty Gauge . InfoText ("") at object
creation time. This makes your object get a fixed height that fits the height of the info
text.

Since version 19 of gauge.mui, you can also use Gauge . InfoText for vertical gauges.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes|, page 14, for details.

TYPE

String

APPLICABILITY

ISG

EXAMPLE

mui.Set(obj, "InfoText", "Please wait... (%1d %%)")

The code above sets up a custom gauge text consisting of the line "Please wait" together
with a percentage specification indicating the current gauge level.

16.6 Gauge.Max
NAME

Gauge.Max — set maximum value of gauge

FUNCTION

Set the maximum value for the gauge. Defaults to 100.

Currently, Gauge .Max and Gauge.Current is limited to 16 bit.

TYPE
Number

APPLICABILITY
ISG

99

101

17 Group class

17.1 Overview

Group class is responsible for the complete layout of a MUI window. A group may contain
any number of child objects, maybe buttons, cycle gadgets or even other groups.

Some attributes of group class define how the children of a group are layouted. You can
e.g. tell your group to place its children horizontally (in a row) or vertically (in a column).
Since every MUI object knows about its minimum and maximum dimensions, group class
has everything it needs to do that job.

More sophisticated layout is possible by assigning different weights to objects in a group or
by making a group two-dimensional.

Beneath the layout issues, a group object passes attributes and methods through to all of
its children. Thus, you can talk and listen to any child of a group by talking and listening
to the group itself.

The following different group types are supported by MUI Royale:
<hgroup> Group children will be laid out in a row (vertical).
<vgroup> Group children will be laid out in a column (horizontal).

<colgroup>
Group children will be laid out in columns.

<virtgroup>
A virtual group. Normally used inside a scrollgroup. See Section 50.1 [Virt-
group class|, page 277, for details.

<scrollgroup>
A group with scrollbars. Virtual groups are usually embedded inside a scroll-
group. See Section 43.1 [Scrollgroup class|, page 217, for details.

Column groups are useful if you need to have identical gadget sizes for all your children in
a group for a more pleasant visual appearance. For example, imagine a form made up of
string gadgets and text objects. It is recommended to use a <colgroup> here because it
leads to a clear and ordered visual appearance. Here’s an example:

<colgroup columns="2">
<text>Name</text>
<string/>
<text>Street</text>
<string/>
<text>City</text>
<string/>
<text>Zip code</text>
<string/>
<text>Country</text>
<string/>
<text>Telephone</text>
<string/>

102 MUTI Royale manual

<text>Email</text>
<string/>
</colgroup>

If we used a <vgroup> with one <hgroup> per row the appearance would be pretty bad
because the string gadget’s width would be different for each line which looks pretty non-
professional.

17.2 Group.ActivePage

NAME
Group.ActivePage — set/get active page of page group

FUNCTION
Set (or get) the active page of a page group. Only this active page is displayed, all others
are hidden.

The value may range from 0 (for the first child) to numchildren-1 (for the last child).
Children are adressed in the order of creation.

The following special values are possible when setting the active page:

First First page.
Last Last page.
Prev Previous page.
Next Next page.

Advance Advance page.

Note: You may *never* supply an incorrect page value!
This attribute can also be used in connection with Register class. See Section 40.1
[Register class|, page 207, for details.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISGN

17.3 Group.AddHead

NAME

Group.AddHead — add detached object as first group child (V1.2)
SYNOPSIS

mui.DoMethod(id, "AddHead", obj)
FUNCTION

This method can be used to add the detached object specified by "obj" to the group
object specified by "id". The detached object will be added as the group’s first child.
After this method returns the specified object will change its state from detached to

Chapter 17: Group class 103

attached. That is why you must no longer use functions that expect a detached object
with this object now.

Before you can call this method, you have to put the group into a special state that
allows the addition and subtraction of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

Detached MUI objects can be created either by calling the mui.CreateObject () function
or by explicitly detaching them from their parent by using the Group.Remove method.

INPUTS

id id of the group object
obj id of the object to attach
EXAMPLE

See Section 5.2 [mui.CreateObject], page 36.

17.4 Group.AddTail

NAME

Group.AddTail — add detached object as last group child (V1.2)
SYNOPSIS

mui.DoMethod(id, "AddTail", obj)
FUNCTION

This method can be used to add the detached object specified by "obj" to the group
object specified by "id". The detached object will be added as the group’s last child.
After this method returns the specified object will change its state from detached to
attached. That is why you must no longer use functions that expect a detached object
with this object now.

Before you can call this method, you have to put the group into a special state that
allows the addition and subtraction of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

Detached MUI objects can be created either by calling the mui . CreateObject () function
or by explicitly detaching them from their parent by using the Group.Remove method.

INPUTS

id id of the group object
obj id of the object to attach
EXAMPLE

See Section 5.2 [mui.CreateObject], page 36.

17.5 Group.ChildList

NAME
Group.ChildList — get a list of all group children (V1.2)

104 MUTI Royale manual

FUNCTION
This attribute allows you to get a table that contains information about all children
that are currently attached the group. For each child in the group, the following table
elements will be initialized:

ID: Contains the ID of the group child.
Class: Contains the name of the class this object belongs to, e.g. "Cycle".
MUIClass:

Contains the internal MUI class name for this object, e.g. "Cycle.mui". This
is probably of not much interest for your application.

TYPE
Table

APPLICABILITY
G

EXAMPLE
t = mui.Get("mygroup", "childlist")
For Local k = 0 To ListItems(t) - 1
DebugPrint (t[k].id, t[k].class, t[k].muiclass)
Next

The code above dumps all objects that belong to "mygroup".

17.6 Group.Columns

NAME
Group.Columns — define group columns

FUNCTION
Indicate number of columns in a two dimensional group. If you use this tag, the total
number of children must be dividable by the number of columns.

The children will be positioned in a two dimensional array, e.g. allowing easy creation
of button fields (maybe for calculator).

The children of your group are always read line by line.

When MUI layouts two-dimensional groups, it does actually two layout calculations, one
for the rows and one the columns. Parameters like weights and dimensions are handled
this way:

— the minimum width of a column/row is the maximum minimum width of all objects
in this column/row.

— the maximum width of a column/row is the minimum maximum width of all objects
in this column/row.

— the weight of a column/row is the sum of all objects in this column/row.

TYPE
Number

Chapter 17: Group class 105

APPLICABILITY
I

17.7 Group.ExitChange

NAME

Group.ExitChange — terminate group exchange state (V1.2)
SYNOPSIS

mui.DoMethod(id, "ExitChange", force)
FUNCTION

This method terminates the state established by Group.InitChange. If children have
been added or removed, MUI will refresh the group making the changes visible to the
user. You can force MUI to do this refresh by setting the "force" argument to True. In
that case MUI will always refresh the whole group no matter if objects have been added
or removed. Forcing a refresh is useful if there’s an object inside your group that you
want to force a refresh on.

INPUTS
id id of the group object
force specify True here to force a complete refresh; otherwise MUI will only refresh
the group if objects have been added or removed
EXAMPLE

See Section 5.2 [mui.CreateObject], page 36.

17.8 Group.HorizSpacing

NAME
Group.HorizSpacing — set /get horizontal spacing

FUNCTION
Number of pixels to be inserted between horizontal elements of a group.
Please use this tag wisely, you will override the user’s prefered default setting!

TYPE
Number

APPLICABILITY
ISG

17.9 Group.InitChange

NAME
Group.InitChange — prepare group for addition or removal of children (V1.2)

106 MUTI Royale manual

SYNOPSIS
mui.DoMethod(id, "InitChange")

FUNCTION
Prepares a group for dynamic adding/removing of objects. Since version 3 MUT offers
the possibility to dynamically add/remove children from groups, even when the window
that contains these objects is currently open. To be able to do this, you must first put the
group into a special "exchange" state by using this method. Then, you can add/remove
children at will. If you’re done, use Group.ExitChange to make MUI recalculate the
display.

INPUTS
id id of the group object

EXAMPLE
See Section 5.2 [mui.CreateObject], page 36.

17.10 Group.Insert

NAME
Group.Insert — insert detached object after specified child (V1.2)

SYNOPSIS
mui.DoMethod(id, "Insert", obj, pred)

FUNCTION
This method can be used to insert the detached object specified by "obj" to the group
object specified by "id". The detached object will be added after the child specified by
"pred". After this method returns the specified object will change its state from detached
to attached. That is why you must no longer use functions that expect a detached object
with this object now.

Before you can call this method, you have to put the group into a special state that
allows the addition and subtraction of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

Detached MUI objects can be created either by calling the mui .CreateObject () function
or by explicitly detaching them from their parent by using the Group.Remove method.

INPUTS

id id of the group object

obj id of the object to insert

pred the object will be inserted after this object
EXAMPLE

See Section 5.2 [mui.CreateObject], page 36.

Chapter 17: Group class 107

17.11 Group.PageMode

NAME
Group.PageMode — put group in page mode

FUNCTION
Settings this attribute to True makes the current group a page group. Page groups
always display only one of their children. Which one can be adjusted with the
Group.ActivePage attribute.

Imagine you have a preferences window with several different pages, e.g. the MUI pref-
erences with object, frame, image, font, screen, keyboard and system prefs. Instead of
one separate window for each group, you could put all pages into a page group and have
a cycle gadget for page switching. This will make your program easier to use since the
user won’t have to handle a lot of windows. However, he will not be able to work with
more than one page at the same time.

Sizes are calculated as follows:

The minimum width/height of a page group is the maximum minimum width/height of
all its children.

The maximum width/height of a page group is the minimum maximum width/height of
all its children.

When the maximum width/height of a child in a page group is smaller than the mini-
mum width/height of the page group (since it contains another child with big minimum
width/height), the child be centered.

Page groups are not limited in depth, children of a page group may of course be other
page groups.

If you want to have a gadget only visible under certain conditions, you could make a
page group containing this gadget and an empty rectangle object.

If you want TAB cycling for the objects in a page group, simply include all objects in
the cycle chain (as if they all were visible at the same time).

A special type of page group is created by Register class which generates a series of
register tabs for all of its children. See Section 40.1 [Register class|, page 207, for details.

TYPE
Boolean

APPLICABILITY
1

17.12 Group.Remove

NAME
Group.Remove — detach object from group (V1.2)

SYNOPSIS
mui.DoMethod(id, "Remove", obj)

108 MUTI Royale manual

FUNCTION
This method can be used to detach the specified object from the specified group. Af-
ter this method returns the specified object will change its state from attached to de-
tached. This means that you could now attach it to another group using a function like
Group.Insert or you could free it using mui.FreeObject ().

Before you can call this method, you have to put the group into a special state that
allows the addition and subtraction of children. This can be done by running the
Group.InitChange and Group.ExitChange methods on the respective group object.

INPUTS

id id of the group object
obj id of the object to remove
EXAMPLE

mui.DoMethod ("mygroup", "initchange")
mui.DoMethod ("mygroup", "remove", "mychild")
mui.DoMethod ("mygroup", "exitchange", false)

The code above removes the child "mychild" from the group "mygroup". You could then
attach "mychild" to another group or free it.

17.13 Group.SameHeight

NAME
Group.SameHeight — set same height for all children

FUNCTION
Boolean value to indicate that all children of this group shall have the same height.

TYPE
Boolean

APPLICABILITY
I

17.14 Group.SameSize

NAME
Group.SameSize — set same size for all children

FUNCTION
This is a shorthand for Group.SameWidth and Group.SameHeight, it sets both of these
attributes at once.

Using Group.SameSize, you won’t need to think if your group is horizontal or vertical,
both cases are handled automatically.
Forcing all objects of a group to be the same size is e.g. useful for a row of buttons. It’s

visually more attractive when these buttons have equal sizes instead of being just as big
as the text within.

Chapter 17: Group class 109

TYPE
Boolean

APPLICABILITY
I

17.15 Group.SameWidth

NAME
Group.SameWidth — set same width for all children

FUNCTION
Boolean value to indicate that all children of this group shall have the same width.

TYPE
Boolean

APPLICABILITY
I

17.16 Group.Spacing

NAME
Group.Spacing — set/get spacing

FUNCTION
This is a shorthand for Group.HorizSpacing and Group.VertSpacing, it sets both of
these attributes at once.

Using Group.Spacing, you won’t need to think if your group is horizontal or vertical,
both cases are handled automatically.

Note that setting a spacing value for a group overrides the user’s default settings. Please
use it only if you have a good reason.

TYPE
Number

APPLICABILITY
ISG

17.17 Group.Title

NAME
Group.Title — set group title

FUNCTION
If you define groups for a register, you can use this attribute to specify a title for this
group that shall be displayed in the register. See Section 40.1 [Register class|, page 207,
for details.

110 MUTI Royale manual

On MUI 3.x this attribute can only be specified during initialization (applicability is just
I on MUI 3.x).

If MUI 4 and MUI Royale 1.2 are available, then you can also use mui.Set() and
mui.Get () with this attribute (ISG applicability).

Furthermore, if MUI 4 and MUI Royale 1.2 are available the string you specify here can
use text formatting codes. See Section 3.9 [Text formatting codes|, page 14, for details.

TYPE
String

APPLICABILITY
ISG

17.18 Group.VertSpacing

NAME
Group.VertSpacing — set/get vertical spacing

FUNCTION
Number of pixels to be inserted between vertical elements of a group.
Please use this tag wisely, you will override the user’s prefered default setting!

TYPE
Number

APPLICABILITY
ISG

111

18 Hollywood class

18.1 Overview

Hollywood class is a powerful MUI class that allows you to embed a complete Hollywood
display inside your MUI GUI. Whenever you draw something to a Hollywood display that is
attached to Hollywood class, it will automatically be drawn to your MUI GUI as well. You
can even hide the Hollywood display and it will still work. Furthermore, all mouse clicks
and key strokes that happen inside Hollywood class will be forwarded to the corresponding
Hollywood display as normal Hollywood events. Thus, Hollywood class allows you to use
almost all of Hollywood’s powerful features inside a MUI GUI as well.
Here is an example of how to embed Hollywood display 1 inside your GUI:

<hollywood display="1"/>
See Section 3.14 [Hollywood bridge], page 18, for details.

18.2 Hollywood.Display

NAME
Hollywood.Display — set Hollywood display to use

FUNCTION
Attach a Hollywood display to the object. You have to specify the identifier of a Holly-
wood display here.
This attribute is mandatory and has to be specified whenever you create a Hollywood
object. You cannot create an empty Hollywood object without an attached display.

TYPE
Number

APPLICABILITY
IS

18.3 Hollywood.MaxHeight

NAME
Hollywood.MaxHeight — set/get maximum height

FUNCTION
If you set this attribute, your Hollywood object will become resizable. Set this attribute
to the maximum allowable height. The maximum height that you can specify here is
16384 pixels.
To indicate that your Hollywood object has no maximum size, you should set this at-
tribute to the maximum allowable size of 16384 pixels. This should be sufficiently large
enough for most purposes.
Whenever the user changes the size of your Hollywood object, the Hollywood display
that is attached to this Hollywood object will get a "SizeWindow" event which you can
listen to using the InstallEventHandler () function.

112 MUTI Royale manual

TYPE
Number

APPLICABILITY
ISG

18.4 Hollywood.MaxWidth

NAME
Hollywood.MaxWidth — set/get maximum width

FUNCTION
If you set this attribute, your Hollywood object will become resizable. Set this attribute
to the maximum allowable width. The maximum width that you can specify here is
16384 pixels.
To indicate that your Hollywood object has no maximum size, you should set this at-
tribute to the maximum allowable size of 16384 pixels. This should be sufficiently large
enough for most purposes.
Whenever the user changes the size of your Hollywood object, the Hollywood display
that is attached to this Hollywood object will get a "SizeWindow" event which you can
listen to using the InstallEventHandler () function.

TYPE
Number

APPLICABILITY
ISG

18.5 Hollywood.MinHeight

NAME
Hollywood.MinHeight — set/get minimum height

FUNCTION
If you set this attribute, your Hollywood object will become resizable. Set this attribute
to the minimum allowable height.
Whenever the user changes the size of your Hollywood object, the Hollywood display
that is attached to this Hollywood object will get a "SizeWindow" event which you can
listen to using the InstallEventHandler () function.

TYPE
Number

APPLICABILITY
ISG

Chapter 18: Hollywood class 113

18.6 Hollywood.MinWidth

NAME
Hollywood.MinWidth — set/get minimum width

FUNCTION
If you set this attribute, your Hollywood object will become resizable. Set this attribute
to the minimum allowable width.

Whenever the user changes the size of your Hollywood object, the Hollywood display
that is attached to this Hollywood object will get a "SizeWindow" event which you can
listen to using the InstallEventHandler () function.

TYPE
Number

APPLICABILITY
ISG

115

19 HSpace class

19.1 Overview

HSpace class is a subclass of rectangle class and simply creates some empty horizontal space
between two objects.

19.2 HSpace.Width

NAME
HSpace.Width — set horizontal space

FUNCTION
Sets the desired horizontal space for this object in pixels.

TYPE
Number

APPLICABILITY
I

117

20 Image class

20.1 Overview
Image class is used to display one of MUI’s standard images or some selfmade image data.
Here is an example XML declaration:

<image source="brush:1"/>

The XML code above creates an image object from Hollywood brush number 1. Image class
fully supports mask and alpha channel transparency in Hollywood brushes so you can also
embed images with transparent areas.

20.2 Image.Brush

NAME
Image.Brush — change image to new brush

FUNCTION
If Image.Source is set to Brush, you can use this attribute to change the brush that
shall be displayed by the image object. Simply pass the identifier of the new Hollywood
brush you would like to have displayed.

Image class fully supports mask and alpha channel transparency in Hollywood brushes
so you can also embed images with transparent areas.

TYPE
Number

APPLICABILITY
S

20.3 Image.FreeHoriz

NAME
Image.FreeHoriz — allow horizontal scaling

FUNCTION
Tell the image if its allowed to get scaled horizontally. Defaults to False.

TYPE
Boolean

APPLICABILITY
I

118

20.4 Image.FreeVert

NAME

Image.FreeVert — allow vertical scaling

FUNCTION
Tell the image if its allowed to get scaled vertically. Defaults to False.

TYPE

Boolean

APPLICABILITY

I

20.5 Image.Source

NAME

Image.Source — set image to display

FUNCTION
Set the image to display. The following predefined MUI images are available here:

ArrowDown
ArrowLeft
ArrowRight
ArrowUp
Assign
Brush:<id>
CheckMark
Chip

Cycle

Disk
Drawer
HardDisk
ListCursor
ListSelCur
ListSelect
Network
PopDrawer
PopFile
PopUp
PropKnob
RadioButton
SliderKnob

MUTI Royale manual

Chapter 20: Image class 119

— TapeDown

— TapePause
— TapePlay

— TapePlayback
— TapeRecord
— TapeStop

— TapeUp

— Volume

If you use the type Brush you need to set <id> to the identifier of a Hollywood brush
that you want to use for this image object.

TYPE
String (see above for possible values)

APPLICABILITY
1

20.6 Image.State

NAME
Image.State — set image state

FUNCTION
Some MUI images offer different states, you can select one of the by setting this attribute.
Simply use one of the following values to switch the state:

Normal Normal state.
Selected Selected state.
Disabled Disabled state.
Busy Busy state.

Indeterminate
Indeterminate state.

InactiveNormal
Normal inactive state.

InactiveSelected
Selected inactive state.

InactiveDisabled
Disabled inactive state.

SelectedDisabled
Selected disabled state.

TYPE
String (see above for possible values)

120 MUTI Royale manual

APPLICABILITY
IS

121

21 Imagebutton class

21.1 Overview
Imagebutton class is a subclass of image class. It turns an image object into an image button
that can be pressed by the user. Imagebutton class recognizes all attributes of image class.

This class is probably not of much use since you can include images in button labels using
text formatting codes anyway. That is why you should use the normal button class instead.

See Section 9.1 [Button class|, page 75, for details.
See Section 3.9 [Text formatting codes|, page 14, for details.

21.2 Imagebutton.Pressed

NAME
Imagebutton.Pressed — learn if an image button is pressed

FUNCTION
This attribute is triggered if the user presses the button.

TYPE
Boolean

APPLICABILITY
N

22 Label class

22.1 Overview

123

Label class is a superclass of text class and allows you to easily create labels for other MUI

objects like checkmarks or cycle objects.
Here is an example of how to use the <label> command:

<label>Hello World</label>

The string you specify here can use text formatting codes. See Section 3.9 [Text formatting

codes|, page 14, for details.

Please note that labels are not resizable horizontally. That is why they can easily block
resizing of your whole GUI. To circumvent this problem, you can simply put the label in a
<hgroup> together with an empty <rectangle> object. See Section 39.1 [Rectangle class],

page 205, for details.

22.2 Label.Centered

NAME
Label.Centered — center label text

FUNCTION
Set this to True to center the label text.

TYPE
Boolean

APPLICABILITY
I

22.3 Label.DoubleFrame

NAME
Label.DoubleFrame — use double high frame for label

FUNCTION

Set this to True to have this label use a double high frame.

TYPE
Boolean

APPLICABILITY
I

124 MUTI Royale manual

22.4 Label.FreeVert

NAME
Label.FreeVert — allow vertical resizing

FUNCTION
Set this to True to allow vertical resizing of this label. Defaults to False.

TYPE
Boolean

APPLICABILITY
I

22.5 Label.Key

NAME
Label.Key — highlight a character in label

FUNCTION
If the character given here exists in the displayed string (no matter if upper or lower
case), it will be underlined. Highlighting a character in the label is useful in connection
with Area.ControlChar.

TYPE
Single character string

APPLICABILITY
I

22.6 Label.Left Aligned

NAME
Label.LeftAligned — set text alignment

FUNCTION
Set this to True to have this label use left aligned text.

TYPE
Boolean

APPLICABILITY
I

22.7 Label.SingleFrame

NAME
Label.SingleFrame — use standard frame for label

125

FUNCTION
Set this to True to have this label use a standard frame.

TYPE
Boolean

APPLICABILITY
I

127

23 Listtree class

23.1 Overview

Listtree class handles tree nodes which can be defined as node or as leaf. Only nodes can
contain a list where other tree nodes can be inserted.

You can create a very complex tree. Two different lists of tree nodes exist: First the one
which contains all the tree nodes you have inserted. All modifications are made to this list.
The second list is the display list. As you can open or close a node, not all of the existing
tree nodes are displayed.

The tree nodes can be inserted and removed, sorted, moved, exchanged or renamed. To
sort you can also drag and drop them. Modifications can be made in relation to the whole
tree, to one level, to a sub-tree or to only one tree node, the visibility is checked or not.

The user can control the listtree by the MUI keys, this means a node is opened with "Right"
and closed with "Left". Check your MUI preferences for the specified keys.

Only one entry can be selected yet, so you cannot use the listtree for multi selecting.

If you do not set Listtree.DragDropSort to False, the list tree will become active for
Drag&Drop. This means you can drag one entry and drop it on the same listtree again.
While dragging an indicator shows where to drop. You cannot drop an entry on itself, nor
you can drop an opened node on any of its members.

When creating a listtree in XML code, you can use Listtreenode class to fill it with nodes
and items. Here is an example declaration:

<listtree>
<node name="CPU">
<item>Model: Motorola MPC 7447/7457 Apollo V1.1</item>
<item>CPU speed: 999 Mhz</item>
<item>FSB speed: 133 Mhz</item>
<item>Extensions: performancemonitor altivec</item>
</node>
<node name="Machine">
<item>Machine name: Pegasos II</item>
<item>Memory: 524288 KB</item>
<item>Extensions: bus.pci bus.agp</item>
</node>
<node name="Expansion buses">
<node name="PCI/AGP">
<item>Vendor 0x11AB Device 0x6460</item>
</node>
</node>
<node name="Libraries">
<item>0x6c7d4ab8: exec.library V53.34</item>
</node>
<node name="Devices'">
<item>0x6ff8fbad: ramdrive.device V52.6</item>
</node>

128 MUTI Royale manual

<node name="Tasks">
<node name="input.device">
<item>Stack: 0x6ff4b000 - 0x6ff5b000</item>
<item>Signals: SigWait 0x00000000</item>
<item>State: Task (Waiting)</item>
</node>
</node>
</listtree>

In this example we have made use of the Listtreenode.Name attribute to add a name
to each of our nodes. There are some more attributes that you can use to customize the
appearance of your nodes. See Section 24.1 [Listtreenode class|, page 141, for details.

The strings you specify using the <item> tag and using the Listtreenode.Name attribute
can use text formatting codes. See Section 3.9 [Text formatting codes|, page 14, for details.

23.2 Listtree.Active

NAME
Listtree.Active — set/get active tree entry

FUNCTION
Setting this attribute will move the cursor on the specified tree node, if it is visible. If
the node is in an opened tree the listview is scrolling into the visible area. Passing the
special value 0ff will vanish the cursor.

If this attribute is read it returns the id of the active tree node. The result is 0ff if there
is no active entry.

You can create a notification on Listtree.Active. The TriggerValue is the active tree
node.

TYPE
String

APPLICABILITY
SGN

23.3 Listtree.AutoLineHeight

NAME
Listtree.AutoLineHeight — enable automatic line height calculation (V1.4)

FUNCTION
Enables automatic line height calculation. Useful e.g. if you cannot predict a sensible
line height.

This attribute requires MUI 4 or better. On older versions of MUI you can use the
Listtree.MinLineHeight attribute to change the line height. See Section 23.12 [List-
tree.MinLineHeight], page 135, for details.

TYPE
Boolean

Chapter 23: Listtree class 129

APPLICABILITY
I

23.4 Listtree.Close

NAME

Listtree.Close — close list node
SYNOPSIS

mui.DoMethod(id, "Close", listnode$, treenode$)
FUNCTION

Closes a node or nodes of a listtree. When the active entry was a child of the closed
node, the closed node will become active.

Listnode$ specifies the node whose list is used to find the entry. The search is started
at the head of the list. This can be the string identifier of a node or one of the following
special values:

Root The root list.
Active The list of the active node.
Parent Parent list.

Treenode$ specifies the node which is to be closed. If there are children of the node,
they are removed from the display list. This can be the string identifier of a node or one
of the following special values:

Head The head of the list defined in listnode$ is closed.

Tail Closes the tail of the list.

Active Closes the active node.

A1l All nodes of the list which is specified in listnode$ are closed.
INPUTS

id id of the listtree object

listnode$

id of list node to use or special value (see above)

treenode$
id of tree node to use or special value (see above)

23.5 Listtree.DoubleClick

NAME
Listtree.DoubleClick — get notified about double clicks on tree nodes

FUNCTION
You can setup a notification on this attribute to learn about double clicks on tree nodes.
The tree node that the user double-clicked will be passed in TriggerValue.

130 MUTI Royale manual

TYPE
Boolean

APPLICABILITY
N

23.6 Listtree.DragDropSort

NAME
Listtree.DragDropSort — enable tree sorting via drag’n’drop

FUNCTION
Setting this attribute to False will disable the ability to sort the list tree by drag&drop.
It is enabled by default.

TYPE
Boolean

APPLICABILITY
IS

23.7 Listtree.EmptyNodes

NAME
Listtree.EmptyNodes — hide list indicator for empty nodes

FUNCTION
Setting this attribute to True will display all empty nodes as leaves, this means no list
indicator is shown. Nevertheless the entry is handled like a node.

TYPE
Boolean

APPLICABILITY
IS

23.8 Listtree.Exchange

NAME

Listtree.Exchange — exchange two tree nodes
SYNOPSIS

mui.DoMethod(id, "Exchange", listndl$, treendl$, listnd2$, treend2$)
FUNCTION

Exchanges the two tree entries specified in listnd1$ and listnd2$.

Listnd1$ specifies the node whose list is used to find the entry. The search is started
at the beginning of this list. This can be the string identifier of a node or one of the
following special values:

Root The root list.

Chapter 23: Listtree class 131

Active The list of the active node.

Treend1$ specifies the node which is to be exchanged. This can be the string identifier
of a node or one of the following special values:

Head The head of the list defined in listnd1$ is exchanged.
Tail Exchanges the tail of the list.
Active Exchanges the active node.

Listnd2$ specifies the node whose list is used to find the entry that the first entry should
be exchanged with. The search is started at the beginning of this list. This can be the
string identifier of a node or one of the following special values:

Root The root list.
Active The list of the active node.

Treend2$ specifies the node which is to be exchanged. This can be the string identifier
of a node or one of the following special values:

Head The head of the list defined in listnd2$ is exchanged.
Tail Exchanges the tail of the list.
Active Exchanges the active node.
Up Exchanges with the next entry.
Down Exchanges with the previous entry.
INPUTS
id id of the listtree object

listnd1$ id of list node to use or special value (see above)
treend1$ id of tree node to use or special value (see above)
listnd2$ id of list node to use or special value (see above)

treend2$ id of tree node to use or special value (see above)

23.9 Listtree.GetEntry

NAME

Listtree.GetEntry — get tree entry
SYNOPSIS

found, table = mui.DoMethod(id, "GetEntry", node, position, flags$)
FUNCTION

Get another node in relation to the specified list or node. This method allows you to
traverse the entire list tree. See below for an example.

"Node" specifies the node which is used to find another one. This can also be a list
node, if the position a related to a list. In contrast to all other methods or attributes of

132 MUTI Royale manual

Listtree class, "node" must NOT be a string identifier but a special value returned by
this method or by Listtree.FindName in the MuiID field of the return table (see below).
Alternatively, it can be one of the following special values:

Root The root list is used.
Active The list with the active entry is used.

Position specifies the number of nodes of the list specified in "node" or one of the
following special values:

Head The head of the list in "node" is returned.

Tail The tail of the list is returned.

Active The active node is returned.

Next The next node after the tree node "node" is returned.

Previous The node before the tree node "node".
Parent The list node of the "node", it’s the parent one.
Flags$ can be a combination of the following options:

SameLevel
Only nodes on the same level are affected.

Visible The position is counted on visible entries only.
If you specify multiple of the flags above, you have to separate them using a semicolon,
e.g. "SamelLevel; Visible".

This method returns two values: The first return value is a boolean flag which indicates
whether or not a node was found. If the first return value is True, the second return
value is a table with the following fields initialized:

Name Name of the tree node.

Node True if the found entry is a node, False if it is a leaf.

ID String object identifier of this tree node.

MuiID Internal MUI ID of this tree node. This is the only id you are allowed

to pass in the 'node’ argument of this method. Passing standard string
object identifiers is not allowed by this method. You can use this value for
subsequent calls to Listtree.GetEntry in the "node" argument See above
for more information and below for an example.

INPUTS
id id of the listtree object
node special node identifier returned by this method

position index of entry to get
flags$ combination of flags to use (see above)

RESULTS

found boolean flag indicating whether or not an entry was found

Chapter 23: Listtree class 133

table table containing information about found entry
EXAMPLE

Function p_DumpListTree(id$, node, indent)
Local found, t = mui.DoMethod(id$, "GetEntry", node, "Head", "")
While found = True
If indent > O

DebugPrint (RepeatStr(" ", indent)
IIf(t.Node = True, "+", "") .. t.name)

Else

DebugPrint (IIf(t.Node = True, "+", "") .. t.name)
EndIf
If t.Node = True Then p_DumpListTree(id$, t.muiid, indent + 4)
found, t = mui.DoMethod(id$, "GetEntry", t.muiid, "Next", "")

Wend
EndFunction

p_DumpListTree("mylisttree", "root", 0)

The code above shows how to dump the complete contents of a listtree, preserving its
structure.

23.10 Listtree.FindName

NAME

Listtree.FindName — find node by name
SYNOPSIS

found, table = mui.DoMethod(id, "FindName", listnode$, name$, flags$)
FUNCTION

Find a node whose name matches the specified one. The search is done without paying
attention to case sensitivity.

Listnode$ specifies the node whose list is used to find the name. This can be the string
identifier of a node or one of the following special values:

Root The root list.

Active The list of the active node.

Flags$ can be a combination of the following options:

Samelevel
Only nodes on the same level are affected.

Visible Only visible entries are taken into account.
If you specify multiple of the flags above, you have to separate them using a semicolon,
e.g. "Samelevel; Visible".

This method returns two values: The first return value is a boolean flag which indicates
whether or not a node was found. If the first return value is True, the second return
value is a table with the following fields initialized:

134 MUTI Royale manual

Name Name of the tree node. As the search is conducted in case insensitive mode,
this item allows you to find out the real spelling of the entry.

Node True if the found entry is a node, False if it is a leaf.

ID String object identifier of this tree node.

MuiID Internal MUI ID of this tree node. This can be used with
Listtree.GetEntry.

INPUTS

id id of the listtree object

listnode$
id of list node to use or special value (see above)

name$ name to look for

flags$ lookup flags (see above)

RESULTS
found boolean flag indicating whether or not an entry was found
table table containing information about found entry

23.11 Listtree.Insert

NAME

Listtree.Insert — insert new tree node
SYNOPSIS

mui.DoMethod(id, "Insert", entry$, id$, listnode$, prevnode$, flags$)
FUNCTION

Inserts entry$ at the position which is defined with listnode$ and prevnode$. Entry$
contains the name of the entry as string. id$ must be a unique string identifier that you
want to use to refer to the newly inserted tree node.

In listnode$ you specify the node whose list is used to insert the entry. This can be the
string identifier of a node or one of the following special values:

Root The root list.
Active The list of the active node.

In prevnode$ you have to specify the node which is the predecessor of the node to insert.
This can be the string identifier of a node or one of the following special values:

Head It will be inserted at the head of the list.
Tail It will be inserted at the tail of the list.
Active It will be inserted after the active node.

Sorted The node is inserted using the sort hook.

Chapter 23: Listtree class 135

Flags$ can be a combination of the following options:

List
Open
Frozen
NoSign
Active

NextNode

The node contains a list where other nodes can be inserted.

The list node is open, sub nodes are displayed.

The node doesn’t react on doubleclick or open/close by user.

The indicator of list nodes isn’t shown.

The inserted entry will be set active, this means the cursor is moved on it.

prevnode$ specifies the successor, not the predecessor, i.e. the node will be
inserted before prevnode$, not after prevnode$.

If you specify multiple of the flags above, you have to separate them using a semicolon,
e.g. "Active; NextNode".

INPUTS
id
entry$
id$

listnode$

prevnode$

flags$

id of the listtree object
name of the entry to insert

unique string identifier for new tree node

id of list node to use or special value (see above)

id of tree node to use or special value (see above)

insertion flags (see above)

23.12 Listtree.MinLineHeight

NAME

Listtree.MinLineHeight — set minimum line height (V1.4)

FUNCTION

Sets the minimum line height for the listtree in pixels. Useful e.g. if you have custom

images.

Alternatively, you can also enable automatic line height calculation for the listtree using
the Listtree.AutoLineHeight attribute. This is more convenient but requires at least
MUI 4.0. See Section 23.3 [Listtree.AutoLineHeight|, page 128, for details.

TYPE
Number

APPLICABILITY

I

136 MUTI Royale manual

23.13 Listtree.Move

NAME

Listtree.Move — move an entry to a new position
SYNOPSIS

mui.DoMethod(id, "Move", olistnode$, otreenode$, nlistnode$, ntreenode$)
FUNCTION

Move an entry to the position after a defined node.

Olistnode$ specifies the node which list is used to find the entry. The search is started
at the head of the list. This can be the string identifier of a node or one of the following
special values:

Root The root list.
Active The list of the active node.

Otreenode$ specifies the node which should be moved. This can be the string identifier
of a node or one of the following special values:

Head The head of the list defined in olistnode$ is moved.
Tail The tail of the list is moved.
Active The active node is moved.

Nlistnode$ specifies the node whose list is used to find the entry. The search is started
at the head of the list. This can be the string identifier of a node or one of the following
special values:

Root The root list.
Active The list of the active node.

Ntreenode$ specifies the node which is the predecessor of the entry which is inserted.
This can be the string identifier of a node or one of the following special values:

Head The node is moved to the head of the list defined in nlistnode$.
Tail The node is moved to the tail of the list.
Active The node is moved after the active node.

Sorted The node is moved to the list using the sort hook.
INPUTS
id id of the listtree object

olistnode$
id of list node to use or special value (see above)

otreenode$
id of tree node to use or special value (see above)

nlistnode$
id of list node to use or special value (see above)

ntreenode$
id of tree node to use or special value (see above)

Chapter 23: Listtree class 137

23.14 Listtree.Open

NAME

Listtree.Open — open list node
SYNOPSIS

mui.DoMethod(id, "Open", listnode$, treenode$)
FUNCTION

Opens a node in the listtree. To open a child which isn’t displayed use Parent as
listnode$ to open all its parents, too. Only nodes can be opened.

Listnode$ specifies the node whose list is used to find the entry. The search is started
at the head of the list. This can be the string identifier of a node or one of the following
special values:

Root The root list.
Active The list of the active node.
Parent Flag to open all the parents of the node, too.

Treenode$ specifies the node which is to be opened. This can be the string identifier of
a node or one of the following special values:

Head Opens the head node of the list.

Tail Opens the tail node of the list.

Active The active node will be opened.

A1l All the nodes of the list are opened.
INPUTS

id id of the listtree object

listnode$

id of list node to use or special value (see above)

treenode$
id of tree node to use or special value (see above)

23.15 Listtree.Quiet

NAME
Listtree.Quiet — disable listtree refresh (V1.4)

FUNCTION
If you add/remove lots of entries to/from a currently visible listtree, this will cause lots
of screen action and slow down the operation. Setting Listtree.Quiet to True will
temporarily prevent the listtree from being refreshed, this refresh will take place only
once when you set it back to false again.

TYPE
Boolean

138 MUTI Royale manual

APPLICABILITY
S

23.16 Listtree.Remove

NAME

Listtree.Remove — remove tree node
SYNOPSIS

mui.DoMethod(id, "Remove", listnode$, treenode$)
FUNCTION

Removes a node or nodes from a listtree. When the active entry is removed, the following
entry will become active.

Listnode$ specifies the node whose list is used to find the entry. The search is started
at the beginning of this list. This can be the string identifier of a node or one of the
following special values:

Root The root list.
Active The list of the active node.

Treenode$ specifies the node which is to be removed. If there are children of the node,
they are also removed. This can be the string identifier of a node or one of the following
special values:

Head The head of the list defined in listnode$ is removed.

Tail Removes the tail of the list.

Active Removes the active node.

A1l All nodes of the list which is specified in listnode$ are removed. Other nodes
of parent lists are not affected.

INPUTS

id id of the listtree object

listnode$
id of list node to use or special value (see above)

treenode$

id of tree node to use or special value (see above)

23.17 Listtree.Rename
NAME

Listtree.Rename — rename list node

SYNOPSIS

mui.DoMethod(id, "Rename", treenode$, newname$)

Chapter 23: Listtree class 139

FUNCTION
Rename the name of specified node.

Treenode$ specifies the node which should be renamed. This can be the string identifier
of a node or one of the following special values:

Active The active tree node is used.
INPUTS

id id of the listtree object

treenode$

id of tree node to use or special value (see above)

newname$ new name for entry

23.18 Listtree.Sort

NAME

Listtree.Sort — sort list node
SYNOPSIS

mui.DoMethod(id, "Sort", listnode$)
FUNCTION

Sorts a list node using the mode specified in Listtree.SortHook.

Listnode$ specifies the node whose list should be sorted. This can be the string identifier
of a node or one of the following special values:

Root The root list.

Active The list of the active node.
INPUTS

id id of the listtree object

listnode$

id of list node to use or special value (see above)

23.19 Listtree.SortHook
NAME
Listtree.SortHook — set sort mode

FUNCTION
Set this attribute to the desired sort mode. When you are using Listtree.Insert with
Sorted or dropping an entry on a closed node, this sort hook is used.

The following values are possible here:
Head Any entry is inserted at head of the list.
Tail Any entry is inserted at tail of the list.

140 MUTI Royale manual

LeavesTop
Leaves are inserted at top of the list, nodes at bottom. They are alphabeti-
cally sorted.

LeavesMixed
The entries are only alphabetically sorted.

LeavesBottom
Leaves are inserted at bottom of the list, nodes at top. They are alphabeti-
cally sorted. This is the default.

TYPE
String (see above for possible values)

APPLICABILITY
IS

23.20 Listtree.Title

NAME
Listtree.Title — set listtree title

FUNCTION
Specify a title for the current listtree.
The string you specify here can use text formatting codes. See Section 3.9 [Text format-

ting codes|, page 14, for details.

TYPE
String

APPLICABILITY
I

141

24 Listtreenode class

24.1 Overview

Listtreenode class is needed when creating listtrees. It allows you to define the single nodes
of the listtree and specify different attributes for them.

Listtreenode class must always be embedded inside a <listtree> declaration. See
Section 23.1 [Listtree class], page 127, for details.

24.2 Listtreenode.Frozen

NAME
Listtreenode.Frozen — create a dead node

FUNCTION
If you set this to True, the node will not react on doubleclick or open/close by the user.

TYPE

Boolean

APPLICABILITY
I

24.3 Listtreenode.Name

NAME
Listtreenode.Name — set node name

FUNCTION
Specifies a string that should be used as the node name. This attribute is mandatory
and must always be set.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes|, page 14, for details.

TYPE
String

APPLICABILITY
I

24.4 Listtreenode.NoSign

NAME
Listtreenode.NoSign — hide list indicator

FUNCTION
If you set this to True, the indicator of list nodes won’t be shown.

142 MUTI Royale manual

TYPE
Boolean

APPLICABILITY
I

24.5 Listtreenode.Open

NAME
Listtreenode.Open — set node state

FUNCTION
Set this to True to open the node by default. All sub nodes are displayed then.

TYPE
Boolean

APPLICABILITY
I

143

25 Listview class

25.1 Overview

This class creates a listview. MUI’s listview class is very powerful. It handles various types
of entries and multi column lists are also supported, the format for a column is adjustable.

Listviews support any kind of sorting, multi selection and an active entry that can be
controlled with the mouse or the cursor keys.

When creating a listview in XML code, you always have to add at least one column to it.
This is done by using the Listviewcolumn class. Here is an example of a minimal listview
declaration with just a single column:

<listview>
<column/>
</listview>

It is also possible to add some entries to the listview right at declaration time. This can be
done by using the <item> tag:

<listview>
<column>
<item>Entry 1</item>
<item>Entry 2</item>
<item>Entry 3</item>
</column>
</listview>

The strings you specify using the <item> tag can use text formatting codes. See Section 3.9
[Text formatting codes], page 14, for details.

If you want to have a multi-column list, you need to use the <column> tag several times.
Here is an example:

<listview>
<column title="Column 1">
<item>Entry 1</item>
<item>Entry 2</item>
<item>Entry 3</item>
</column>
<column title="Column 2">
<item>Entry 1</item>
<item>Entry 2</item>
<item>Entry 3</item>
</column>
<column title="Column 3">
<item>Entry 1</item>
<item>Entry 2</item>
<item>Entry 3</item>
</column>
</listview>

144 MUTI Royale manual

In this example we have also made use of the Listviewcolumn.Title attribute to add a title
bar to each of our columns. There are some more attributes that you can use to customize
the appearance of your columns. See Section 26.1 [Listviewcolumn class|, page 159, for
details.

25.2 Listview.Active

NAME
Listview.Active — set/get active list entry

FUNCTION
Reading this attribute will return the number of the active entry (the one with the cursor
on it). The result is between 0 and Listview.Entries-1 or 0ff, in which case there is
currently no active entry.
Setting the attribute will cause the list to move the cursor to the new position and scroll
this position into the visible area.

The following special values are possible when setting this attribute:

0ff Clear selection.

Top Select top entry.

Bottom Select bottom entry.

Up Select previous entry.

Down Select next entry.

PageUp Move list cursor one page up.

PageDown Move list cursor one page down.

TYPE
Number or string (see above for possible values)

APPLICABILITY
ISGN

25.3 Listview.AdjustHeight

NAME
Listview.AdjustHeight — fix listview height

FUNCTION
A list with Listview.AdjustHeight set to true is exactly as high as all of its entries and
not resizable. This is only possible when the list is filled *before* the window is opened.

TYPE
Boolean

APPLICABILITY
I

Chapter 25: Listview class 145

25.4 Listview.AdjustWidth

NAME
Listview.AdjustWidth — fix listview width

FUNCTION
A list with Listview.AdjustWidth set to true is exactly as wide as the widest entry and
not resizable. This is only possible when the list is filled *before* the window is opened.

TYPE
Boolean

APPLICABILITY
I

25.5 Listview.AutoLineHeight

NAME
Listview.AutoLineHeight — enable automatic line height calculation (V1.4)

FUNCTION
Enables automatic line height calculation. Useful e.g. if you cannot predict a sensible
line height.

This attribute requires MUI 4 or better. On older versions of MUI you can use the
Listview.MinLineHeight attribute to change the line height. See Section 25.20
[Listview.MinLineHeight], page 151, for details.

TYPE
Boolean

APPLICABILITY
I

25.6 Listview.AutoVisible

NAME
Listview.AutoVisible — automatically jump to active entry

FUNCTION
Set this to make your lists automatically jump to the active entry when they are dis-
played.

TYPE
Boolean

APPLICABILITY
ISG

146 MUTI Royale manual

25.7 Listview.Clear

NAME

Listview.Clear — clear listview
SYNOPSIS

mui.DoMethod(id, "Clear")
FUNCTION

Clear the list, all entries are removed.
INPUTS

id id of the listview object

25.8 Listview.ClickColumn

NAME
Listview.ClickColumn — learn about column clicks

FUNCTION
When using a multi column list, this attribute contains the number of the column where
the user clicked.

TYPE
Number

APPLICABILITY
GN

25.9 Listview.DefClickColumn

NAME
Listview.DefClickColumn — set default column

FUNCTION
When the listview is controlled with the keyboard and the user presses RETURN, the
value given here will be used as default for Listview.ClickColumn.

TYPE
Number

APPLICABILITY
ISG

25.10 Listview.DoubleClick

NAME
Listview.DoubleClick — learn about double click on listview

Chapter 25: Listview class 147

FUNCTION
This attribute is set to True whenever the user double clicks on an entry in the list.

TYPE
Boolean

APPLICABILITY
GN

25.11 Listview.Entries
NAME

Listview.Entries — get listview entries

FUNCTION
Get the current number of entries in the list.

TYPE
Number

APPLICABILITY
G

25.12 Listview.Exchange

NAME

Listview.Exchange — exchange two entries
SYNOPSIS

mui.DoMethod(id, "Exchange", posl, pos2)
FUNCTION

Exchange two entries in a list. Positions have to be passed as absolute values starting
from O to Listview.Entries-1 or pass one of the following special values:

Top Use top entry.

Active Use active entry.

Bottom Use bottom entry.

Next Use next entry. This is only valid for the second parameter.
Previous Use previous entry. This is only valid for the second parameter.

INPUTS
id id of the listview object

pos1l number of the first entry

pos2 number of the second entry

148 MUTI Royale manual

25.13 Listview.First

NAME
Listview.First — get first visible entry

FUNCTION
Get the number of the entry displayed on top of the list. You have to be prepared to
get a result of -1, which means that the list is not visible at all (e.g. when the window
is iconifed).

TYPE

Number

APPLICABILITY
G

25.14 Listview.GetEntry

NAME

Listview.GetEntry — get listview entry
SYNOPSIS

columni$, ... = mui.DoMethod(id, "GetEntry", pos)
FUNCTION

Get an entry of a list. Pass Active in pos to get the active entry. Listview.GetEntry
will return the entries of all columns in the row specified by pos. You will get as many
return values as there are columns in the listview.

INPUTS

id id of the listview object

pos index of listview row or "Active"
RESULTS

columnl$ entry data of first column

further data if listview has multiple columns

25.15 Listview.GetSelection

NAME

Listview.GetSelection — get selected entries
SYNOPSIS

t = mui.DoMethod(id, "GetSelection")
FUNCTION

This method steps through the contents of a (multi select) listview and returns every
entry that is currently selected. When no entry is selected but an entry is active, only
the active entry will be returned.

Chapter 25: Listview class 149

This behaviour will result in not returning the active entry when you have some other
selected entries somewhere in your list. Since the active entry just acts as some kind
of cursor mark, this seems to be the only sensible possibility to handle multi selection
together with keyboard control.

INPUTS

id id of the listview object
RESULTS

t table containing selected entries

25.16 Listview.Input

NAME
Listview.Input — configure input mode of listview

FUNCTION
Setting this to False will result in a read only list view. Defaults to True.

TYPE
Boolean

APPLICABILITY
I

25.17 Listview.Insert

NAME

Listview.Insert — insert new entry
SYNOPSIS

mui.DoMethod(id, "Insert", pos, columni$, ...)
FUNCTION

Insert one new entry into a list. If the listview has multiple columns, you need to pass
as many arguments as there are columns in the listview.

The insert position is specified in the "pos" argument. The new entry will be added in
front of the entry specified by "pos". This can be an absolute index position starting at
0 for the first entry or one of the following special values:

Top Insert as first entry.

Active Insert in front of the active entry.
Sorted Insert sorted.

Bottom Insert as last entry.

If "pos" is bigger or equal to the number of entries in the list, it’s treated like Bottom.

All entries you insert using this method can use text formatting codes. See Section 3.9
[Text formatting codes]|, page 14, for details.

150 MUTI Royale manual

INPUTS
id id of the listview object
pos insert position as absolute number or special value (see above)

columni$ entry to insert into first column

more entries if listview has multiple columns

25.18 Listview.InsertPosition

NAME
Listview.InsertPosition — query position of newly inserted entry

FUNCTION
After insertion of an element with Listview.Insert, you can query the position of the
new entry by getting this attribute.

TYPE
Number

APPLICABILITY
G

25.19 Listview.Jump

NAME

Listview.Jump — scroll to an entry
SYNOPSIS

mui.DoMethod(id, "Jump", pos)
FUNCTION

Scroll any entry into the visible part of a list.

Note: Jumping to an entry doesn’t mean to make this entry the active one. This can be
done by setting the Listview.Active attribute.

Starting with MUI Royale 1.4, "pos" can also be one of the following special values:

Active Jump to active item.
Top Jump to top.
Bottom Jump to bottom.
Up Jump one page up.
Down Jump one page down.
INPUTS
id id of the listview object
pos number of the entry that should be made visible. Pass "Active" to jump to

the active entry.

Chapter 25: Listview class 151

25.20 Listview.MinLineHeight

NAME
Listview.MinLineHeight — set minimum line height

FUNCTION
Sets the minimum line height for lists in pixels. Useful e.g. if you have custom images.

Alternatively, you can also enable automatic line height calculation for the listview using
the Listview.AutoLineHeight attribute. This is more convenient but requires at least
MUT 4.0. See Section 25.5 [Listview.AutoLineHeight], page 145, for details.

TYPE

Number

APPLICABILITY
1

25.21 Listview.Move

NAME

Listview.Move — move entry to new position
SYNOPSIS

mui.DoMethod(id, "Move", from, to)
FUNCTION

Move an entry from one position to another. Positions have to be passed as absolute
values starting from 0 to Listview.Entries-1 or pass one of the following special values:

Top Use top entry.

Active Use active entry.

Bottom Use bottom entry.

Next Use next entry. This is only valid for the second parameter.
Previous Use previous entry. This is only valid for the second parameter.

INPUTS

id id of the listview object
from number of the first entry
to number of the second entry

25.22 Listview.MultiSelect

NAME
Listview.MultiSelect — set multi select mode for listview

152 MUTI Royale manual

FUNCTION
Four possibilities exist for a listviews multi select capabilities:

None The listview cannot multiselect at all.

Default The multiselect type (with or without shift) depends on the users preferences
setting.

Shifted Overrides the users prefs, multi selecting only together with shift key.
Always Overrides the users prefs, multi selecting without shift key.
Please do *not™ override the users prefs unless you have a good reason!

TYPE
String (see above for possible values)

APPLICABILITY
I

25.23 Listview.Quiet

NAME
Listview.Quiet — disable listview refresh (V1.2)

FUNCTION
If you add/remove lots of entries to/from a currently visible list, this will cause lots
of screen action and slow down the operation. Setting Listview.Quiet to True will
temporarily prevent the list from being refreshed, this refresh will take place only once
when you set it back to false again.

TYPE
Boolean

APPLICABILITY
S

25.24 Listview.Remove

NAME

Listview.Remove — remove entry from list
SYNOPSIS

mui.DoMethod(id, "Remove", pos)
FUNCTION

Remove an entry from a list. The position can be specified as an absolute index value
or as one of the following special values:

First Remove first entry.

Active Remove active entry.

Chapter 25: Listview class 153

Last Remove last entry.
Selected Remove selected entry.
When the active entry is removed, the following entry will become active.

INPUTS
id id of the listview object

pos index of entry to remove or one of the special values (see above)

25.25 Listview.Rename

NAME

Listview.Rename — rename an entry (V1.1)
SYNOPSIS

mui.DoMethod(id, "Rename", pos, columni$, ...)
FUNCTION

Renames the listview entry at the specified position. If the listview has multiple columns,
you need to pass as many arguments as there are columns in the listview. It is not possible
to rename only a single column entry - this method always affects the complete row so
you need to pass as many strings as there are columns in your listview.

The entry position is specified in the "pos" argument. This can be an absolute index
position starting at 0 for the first entry or one of the following special values:

Active Rename the active entry.

All strings you pass to this method can use text formatting codes. See Section 3.9 [Text
formatting codes|, page 14, for details.

INPUTS
id id of the listview object
pos entry position as absolute number or special value (see above)

columnl$ new text for entry in the first column

more entries if listview has multiple columns

25.26 Listview.Select

NAME

Listview.Select — (de)select list entry
SYNOPSIS

mui.DoMethod(id, "Select", pos, seltype)
FUNCTION

Select /deselect a list entry or ask an entry if its selected.
"Pos" can be either the number of the entry or one of the following special values:

Active For the active entry.

154 MUTI Royale manual

A1l For all entries.

"Seltype" can be one of the following:
0ff Unselect entry.

On Select entry.

Toggle Toggle entry.

INPUTS
id id of the listview object
pos entry index or special value (see above)

seltype selection type (see above)

25.27 Listview.ScrollerPos

NAME
Listview.ScrollerPos — set scroller position for listview

FUNCTION
Specifies the position of a listviews scrollbar. Don’t use this tag unless it’s absolutely
required!

If you specify None here, your listview won’t get a scroller at all and look much like a list
object alone. However, listviews without scroller are still more powerful than list objects
as they feature e.g. drag&drop possibilities.

Creating listviews without a scrollbar makes sense if you want to have the scrollbar
somewhere else, e.g. outside of a horizontal virtual group where the listview resides.
This technique allows the creation of horizontally scrollable listviews.

The following options are possible:

Default Position scrollbar according to user preferences.

Left Position scrollbar to the left of the listview.
Right Position scrollbar to the right of the listview.
None No scrollbar.

TYPE

String (see above for possible values)

APPLICABILITY
I

Chapter 25: Listview class 155

25.28 Listview.SelectChange

NAME
Listview.SelectChange — learn about selection changes

FUNCTION
This attribute is set to True whenever the selection state of one or more items in the list
is changing. You can use this e.g. if you want to display the number of selected items in
a status line.

TYPE
Boolean

APPLICABILITY
GN

25.29 Listview.Sort

NAME

Listview.Sort — sort the list
SYNOPSIS

mui.DoMethod(id, "Sort", column)
FUNCTION

Sort the list. MUI uses an iterative quicksort algorithm, no stack problems will occur.
You have to pass the index of the column by which the list should be sorted in the third
argument. Columns are counted from 0 to the number of columns minus 1, i.e. to sort
the list by the first column pass 0 as the column index.

INPUTS
id id of the listview object
column index of column to use sort list by (V1.1)

25.30 Listview.SortFunc

NAME
Listview.SortFunc — determine how entries should be sorted (V1.2)

FUNCTION
This attribute can be used to set up a callback function that will be called whenever
MUI Royale needs to sort the list entries. The callback function will receive two entries
as arguments and it has to determine which entry should be put first.

The callback function you specify here will be called like a standard MUI Royale event
callback, but with the following extra arguments:

Entryl: This is a table containing all elements of a single listview row. As listviews
can have more than one column, this table contains as many string elements
as there are columns in your listview.

156 MUTI Royale manual

Entry2: This is a table containing all elements of a single listview row. As listviews
can have more than one column, this table contains as many string elements
as there are columns in your listview.

SortColumn:
This contains the column index by which the list should be sorted. Columns
are counted from 0 to the number of columns minus 1. See Section 25.29
[Listview.Sort], page 155, for details.

Your callback function then has to return a value that indicates how the two entries
should be aligned in the listview. If entry 1 should be placed before 2, your callback has
to return -1. If entry 1 should be placed after entry 2, your callback has to return 1. If
the two entries are the same, return 0.

Note that you always have to pass a string specifying the name of a Hollywood function
to this attribute. Never pass the function directly but always pass the name of the
function as a string!

Also note that you must also set up a notification on this attribute. Otherwise the
callback function will never get called.

See Section 3.6 [Notifications|, page 12, for details.

TYPE
String

APPLICABILITY
ISGN

25.31 Listview.TitleClick

NAME
Listview.TitleClick — learn about title clicks (V1.1)

FUNCTION
This attribute is set to the column index number whenever the user clicks on a column
title button.

This attribute is only supported on AmigaOS 4 and MorphOS.

TYPE
Number

APPLICABILITY
N

25.32 Listview.Visible

NAME
Listview.Visible — get number of visible entries

157

FUNCTION
Get the current number of visible entries in the list. You have to be prepared to get
a result of -1, which means that the list is not visible at all (e.g. when the window is
iconifed).

TYPE
Number

APPLICABILITY
G

159

26 Listviewcolumn class

26.1 Overview

Listviewcolumn class is needed when creating listviews. It allows you to specify different
attributes for the columns of your listviews.

Listviewcolumn class must always be embedded inside a <listview> declaration. See
Section 25.1 [Listview class|, page 143, for details.

26.2 Listviewcolumn.Bar

NAME

Listviewcolumn.Bar — use separator bar between columns

FUNCTION
Since muimaster.library V11, you can enable a vertical bar between this and the next
column by using this switch.

TYPE
Boolean

APPLICABILITY
I

26.3 Listviewcolumn.Col

NAME
Listviewcolumn.Col — set column order

FUNCTION
This value adjusts the number of the current column. This allows you to adjust the
order of your columns without having to change your display hook.

Defaults to current entry number (0,1,...).

This attribute is especially useful in connection with Dirlist class and Volumelist class
to change the display order of the different attributes. See Section 14.1 [Dirlist class],
page 87, for details.

Starting with MUI Royale 1.1 this attribute has an applicability of ISG. In MUI Royale
1.0 the applicability of this attribute was only I.

TYPE
Number

APPLICABILITY
ISG

160 MUTI Royale manual

26.4 Listviewcolumn.Delta

NAME
Listviewcolumn.Delta — set column width

FUNCTION
Space in pixel between this column and the next. the last displayed column ignores this
setting. Defaults to 4.
Starting with MUI Royale 1.1 this attribute has an applicability of ISG. In MUI Royale
1.0 the applicability of this attribute was only I.

TYPE
Number

APPLICABILITY
ISG

26.5 Listviewcolumn.Hidden

NAME
Listviewcolumn.Hidden — show /hide listview column (V1.1)

FUNCTION
This attribute allows you to show or hide single listview columns. Note that the columns
will still be there, they’ll just be invisible. Thus, you must not forget hidden columns
when changing listview entries using Listview.Insert or similar methods.

This attribute is only supported on AmigaOS 4 and MorphOS.

TYPE
Boolean

APPLICABILITY
ISG

26.6 Listviewcolumn.MinWidth
NAME

Listviewcolumn.MinWidth — set minimum column width

FUNCTION

Minimum percentage width for the current column. If your list is 200 pixel wide and
you set this to 25, your column will at least be 50 pixel. The special value -1 for this
parameter means that the minimum width is as wide as the widest entry in this column.
This ensures that every entry will be completely visible (as long as the list is wide
enough). Defaults to -1.

Starting with MUI Royale 1.1 this attribute has an applicability of ISG. In MUI Royale
1.0 the applicability of this attribute was only I.

TYPE
Number

Chapter 26: Listviewcolumn class 161

APPLICABILITY
ISG

26.7 Listviewcolumn.MaxWidth

NAME
Listviewcolumn.MaxWidth — set maximum column width

FUNCTION
Maximum percentage width for the current column. If your list is 200 pixel wide and
you set this to 25, your column will not be wider as 50 pixel. The special value -1 for
this parameter means that the maximum width is as wide as the widest entry in this
column. Defaults to -1.

Starting with MUI Royale 1.1 this attribute has an applicability of ISG. In MUI Royale
1.0 the applicability of this attribute was only I.

TYPE
Number

APPLICABILITY
ISG

26.8 Listviewcolumn.PreParse

NAME

Listviewcolumn.PreParse — set preparse text string for column

FUNCTION
A preparse value for this column. Setting this e.g. to "\33c¢" would make the column
centered.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes], page 14, for details.

Starting with MUI Royale 1.1 this attribute has an applicability of ISG. In MUI Royale
1.0 the applicability of this attribute was only I.

TYPE
String

APPLICABILITY
ISG

26.9 Listviewcolumn.Title

NAME
Listviewcolumn.Title — set column title

162 MUTI Royale manual

FUNCTION
Specify a title for the current column. The title is displayed at the very first line and
doesn’t scroll away when the list top position moves.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes], page 14, for details.

Starting with MUI Royale 1.1 this attribute has an applicability of ISG. In MUI Royale
1.0 the applicability of this attribute was only I.

TYPE
String

APPLICABILITY
ISG

26.10 Listviewcolumn.Weight

NAME
Listviewcolumn.Weight — set column weight

FUNCTION
The weight of the column. As with MUI’s group class, columns are layouted with a
minimum size, a maximum size and weight. A column with a weight of 200 would gain
twice the space than a column with a weight of 100. Defaults to 100.

Starting with MUI Royale 1.1 this attribute has an applicability of ISG. In MUI Royale
1.0 the applicability of this attribute was only I.

TYPE
Number

APPLICABILITY
ISG

163

27 Menu class

27.1 Overview

Objects of menu class describe exactly one pulldown menu. They don’t feature many options
themselves, but as a subclass of Family class, they act as father for their several menu
item objects which you can add to the menu using the Menuitem class. See Section 28.1
[Menuitem class], page 167, for details.

Menus must always be embedded inside a <menustrip> object. See Section 29.1 [Menustrip
class], page 171, for details.

27.2 Menu.AddHead

NAME

Menu.AddHead — add detached object as first family child (V1.2)
SYNOPSIS

mui.DoMethod(id, "AddHead", obj)
FUNCTION

This method can be used to add the detached object specified by "obj" to the family
object specified by "id". The detached object will be added as the family’s first child.
After this method returns the specified object will change its state from detached to
attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MUI objects can be created either by calling the mui . CreateObject () function
or by explicitly detaching them from their parent by using the Menu.Remove method.

INPUTS
id id of the family object

obj id of the object to attach

27.3 Menu.AddTail

NAME

Menu.AddTail — add detached object as last family child (V1.2)
SYNOPSIS

mui.DoMethod(id, "AddTail", obj)
FUNCTION

This method can be used to add the detached object specified by "obj" to the family
object specified by "id". The detached object will be added as the family’s last child.
After this method returns the specified object will change its state from detached to
attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MUI objects can be created either by calling the mui.CreateObject () function
or by explicitly detaching them from their parent by using the Menu.Remove method.

164

INPUTS
id id of the family object
obj id of the object to attach

27.4 Menu.Disabled

NAME
Menu.Disabled — set/get disabled state of menu

FUNCTION
Enable or disable the complete menu.

TYPE
Boolean

APPLICABILITY
ISG

27.5 Menu.Insert
NAME

Menu.Insert — insert detached object after specified child (V1.2)

SYNOPSIS
mui.DoMethod(id, "Insert", obj, pred)

FUNCTION

MUTI Royale manual

This method can be used to insert the detached object specified by "obj" to the family
object specified by "id". The detached object will be added after the child specified by
"pred". After this method returns the specified object will change its state from detached
to attached. That is why you must no longer use functions that expect a detached object

with this object now.

Detached MUI objects can be created either by calling the mui . CreateObject () function
or by explicitly detaching them from their parent by using the Menu.Remove method.

INPUTS
id id of the family object
obj id of the object to insert
pred the object will be inserted after this object

27.6 Menu.Remove
NAME

Menu.Remove — detach object from family (V1.2)

Chapter 27: Menu class 165

SYNOPSIS
mui.DoMethod(id, "Remove", obj)

FUNCTION
This method can be used to detach the specified object from the specified family. Af-
ter this method returns the specified object will change its state from attached to de-
tached. This means that you could now attach it to another family using a function like
Menu. Insert or you could free it using mui.FreeObject ().

INPUTS
id id of the family object
obj id of the object to remove

27.7 Menu.Title

NAME
Menu.Title — set/get menu title

FUNCTION
Describe the title of the menu.

TYPE
String

APPLICABILITY
ISG

167

28 Menuitem class

28.1 Overview

Menuitem class describes a single menu item. You can use all of the gadtools menus features
expect image menus here.

Since Menuitem class is a subclass of Family class, you can add other menu items as children
of a menu item to indicate sub menus. MUI does not limit the level of sub menus, but the
operating system currently allows a maximum nesting level of one. Because of this, children
of menu items should not contain other menu items for now, the results are unpredictable.

Menuitems must always be embedded inside a <menu> tag which in turn have to be embed-
ded inside a <menustrip> tag. See Section 29.1 [Menustrip class|, page 171, for details.

Please note that the XML tag for menuitem class is just <item> and not <menuitem>.

See Section 29.1 [Menustrip class|, page 171, for an example.

28.2 Menuitem.CommandString

NAME
Menuitem.CommandString — set/get command string

FUNCTION
Set to True if Menuitem.Shortcut points to a command string (e.g. "shift alt q")
instead of a simple letter. Note that MUI won’t check if these keys are pressed (just like
intuition), you’ll have to do this yourself.

TYPE
Boolean

APPLICABILITY
ISG

28.3 Menuitem.Disabled

NAME
Menuitem.Disabled — set/get disabled state of menu item

FUNCTION
Enable/disable the menu item.

TYPE
Boolean

APPLICABILITY
ISG

168 MUTI Royale manual

28.4 Menuitem.Exclude

NAME
Menuitem.Exclude — set/get exclude mask for radio menu items

FUNCTION
Bitmask of menu item numbers that are to be deselected when this one is selected.

TYPE
Number

APPLICABILITY
ISG

28.5 Menuitem.Selected

NAME
Menuitem.Selected — handle menu item selection state

FUNCTION
Set /get the selected state of a menu item. By setting up notification on this attribute,
you can react on menu actions immediately.

TYPE
Boolean

APPLICABILITY
ISGN

28.6 Menuitem.Shortcut

NAME
Menuitem.Shortcut — set/get shortcut for menu item

FUNCTION
Define the shortcut for a menu item.

TYPE
String

APPLICABILITY
ISG

28.7 Menuitem.Title

NAME
Menuitem. Title — set/get menu item title

Chapter 28: Menuitem class 169

FUNCTION
Define the items title.

If MUI Royale 1.3 and MUI 4.0 or better is installed and this menu item is to appear in a
context menu, you may use text formatting codes here. See Section 3.9 [Text formatting
codes|, page 14, for details.

TYPE
String

APPLICABILITY
ISG

28.8 Menuitem.Type

NAME
Menuitem.Type — set/get menu item type

FUNCTION
This attribute can be used to set the type for this menu item. The following types are
currently possible:

Normal Normal menu item.
Toggle Toggle menu item with a checkmark.
Radio Menu item is part of a group of radio items. Menuitem.Exclude can be used

to define the possible combinations of the radio items.

TYPE
String (see above for possible values)

APPLICABILITY
IG

171

29 Menustrip class

29.1 Overview

Menustrip class is the base class for MUI’s object oriented menus. Its children are objects
of Menu class, each of them describes exactly one menu.

A Menustrip object doesn’t feature many options itself, but as a subclass of Family class,
it simply acts as father for multiple Menu objects.

The Menustrip object is usually specified as a child of either Application class or window
class with the attributes Application.Menustrip or Window.Menustrip. Additionally, it
can also be used as a context menu for other MUI objects using the Area.ContextMenu
attribute.

In an XML file a menu tree is defined using the <menustrip>, <menu> and <item> tags.
Here is an example definition of a simple menustrip:

<menustrip id="mymenustrip">
<menu title="Project">
<item>New...</item>

<item>Open...</item>

<item/>

<item>Save</item>

<item>Save as...</item>

<item/>

<item>Quit</item>
</menu>

<menu title="Edit">
<item shortcut="X">Cut</item>
<item shortcut="C">Copy</item>
<item shortcut="V">Paste</item>

</menu>

<menu title="7">
<item>Settings...</item>
<item>MUI settings...</item>
<item/>
<item>About...</item>
<item>About MUI...</item>

</menu>

</menustrip>

Note the empty <item/> declarations: These will insert a separator bar to the menu tree.
Using separator bars makes your menu more readable to the end-user. After you have
written the XML declaration above you can add the menustrip to one of your windows by
using the Window.Menustrip attribute as follows:

<window menustrip="mymenustrip">

</window>

172 MUTI Royale manual

It is also possible to add a menustrip as a context menu to one of your window’s gadgets
using the Area.ContextMenu attribute. The context menu will then appear whenever the
user presses the right mouse button over the gadget that has a context menu. Here is an
example of how to add a menustrip as a context menu to a listview:

<listview contextmenu="mymenustrip">

</listview>
Please note that menustrips which are used as context menus must not contain more than
one <menu> tree.

It is very important to note that you have to declare your menustrips in the <application>
scope because menustrips are global objects and are only attached to windows or gadgets
later on. That is why it is not allowed to declare menustrips inside a <window> XML scope.

29.2 Menustrip.AddHead

NAME

Menustrip.AddHead — add detached object as first family child (V1.2)
SYNOPSIS

mui.DoMethod(id, "AddHead", obj)
FUNCTION

This method can be used to add the detached object specified by "obj" to the family
object specified by "id". The detached object will be added as the family’s first child.
After this method returns the specified object will change its state from detached to
attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MUI objects can be created either by calling the mui.CreateObject () func-
tion or by explicitly detaching them from their parent by using the Menustrip.Remove
method.

INPUTS
id id of the family object
obj id of the object to attach

29.3 Menustrip.AddTail

NAME

Menustrip.AddTail — add detached object as last family child (V1.2)
SYNOPSIS

mui.DoMethod(id, "AddTail", obj)
FUNCTION

This method can be used to add the detached object specified by "obj" to the family
object specified by "id". The detached object will be added as the family’s last child.
After this method returns the specified object will change its state from detached to

Chapter 29: Menustrip class 173

attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MUI objects can be created either by calling the mui.CreateObject () func-
tion or by explicitly detaching them from their parent by using the Menustrip.Remove
method.

INPUTS
id id of the family object
obj id of the object to attach

29.4 Menustrip.Insert

NAME

Menustrip.Insert — insert detached object after specified child
SYNOPSIS

mui.DoMethod(id, "Insert", obj, pred)
FUNCTION

This method can be used to insert the detached object specified by "obj" to the family
object specified by "id". The detached object will be added after the child specified by
"pred". After this method returns the specified object will change its state from detached
to attached. That is why you must no longer use functions that expect a detached object
with this object now.

Detached MUI objects can be created either by calling the mui.CreateObject() func-
tion or by explicitly detaching them from their parent by using the Menustrip.Remove
method.

INPUTS
id id of the family object
obj id of the object to insert
pred the object will be inserted after this object

29.5 Menustrip.Remove

NAME

Menustrip.Remove — detach object from family
SYNOPSIS

mui.DoMethod(id, "Remove", obj)
FUNCTION

This method can be used to detach the specified object from the specified family. Af-
ter this method returns the specified object will change its state from attached to de-
tached. This means that you could now attach it to another family using a function like
Menustrip.Insert or you could free it using mui.FreeObject().

174 MUTI Royale manual

INPUTS
id id of the family object

obj id of the object to remove

175

30 Notify class

30.1 Overview

Notify class is superclass of all other MUI classes. Its main purpose is to handle MUI’s
notification mechanism, but it also contains some other methods and attributes useful for
every object.

Because Notify class is the super class for all other MUI classes, you can use all of its
attributes with all other MUI classes. For example, you can use Notify.HelpNode to add
online help reference to MUI gadgets or you could use Notify.AppMessage to add MUI
objects to the app message handler.

30.2 Notify.AppMessage

NAME
Notify. AppMessage — get app message

FUNCTION
When your window is an AppWindow, i.e. you have set the Window.AppWindow attribute
to True, you will be able to get AppMessages by listening to Notify.AppMessage. When-
ever an AppMessage arrives, this attribute will trigger a notification.

For AppMessage notifications, the standard MUI Royale event handler callback will get
two additional entries in the table that is passed as the parameter to your event handling
function:

NumDropFiles:
The number of files the user dropped over your object. This is usually 1.

DropFiles:
A table containing the list of files that were dropped over the object. This
table will have exactly 'NumDropFiles’ entries.

See Section 3.6 [Notifications|, page 12, for details.

Notify.AppMessage is object specific. You can e.g. set up different notifications for
different objects in your window, they will only get executed when icons are dropped
over the specific object.

If you wait on Notify.AppMessage with a window object, your notify will always get
executed when icons are dropped on the window.

Note that AppWindows are only possible on the Workbench screen.

TYPE
String

APPLICABILITY
N

176 MUTI Royale manual

30.3 Notify.Class

NAME
Notify.Class — get class name of object

FUNCTION
Get the MUI Royale class name of an object.

TYPE
String

APPLICABILITY
G

30.4 Notify.ExportID

NAME
Notify.ExportID — set ID for settings export (V1.7)

FUNCTION
Objects with a Notify.ExportID export their contents during Application.Save and
import them during Application.Load.

You have to use different export IDs for your objects!

TYPE
Four character string

APPLICABILITY
ISG

30.5 Notify.HelpLine

NAME
Notify.HelpLine — define line in help file

FUNCTION
Define a line in a help file specified with Application.HelpFile.
See Section 3.10 [Implementing online help|, page 15, for details.

TYPE
Number

APPLICABILITY
ISG

Chapter 30: Notify class 177

30.6 Notify.HelpNode

NAME
Notify.HelpNode — define node in help file

FUNCTION
Define a node in a help file specified with Application.HelpFile.
See Section 3.10 [Implementing online help|, page 15, for details.

TYPE
String

APPLICABILITY
ISG

30.7 Notify.ID

NAME
Notify.ID — set object 1D

FUNCTION
This attribute can be used to set the ID for a MUI object. You need to give your
objects unique IDs so that you can access them using the mui.Set(), mui.Get () and
mui.DoMethod () functions.

TYPE
String

APPLICABILITY
I

30.8 Notify.MUIClass

NAME
Notify. MUIClass — get MUI class name of object

FUNCTION
Get the MUI class name of an object.

TYPE
String

APPLICABILITY
G

178 MUTI Royale manual

30.9 Notify.NoNotify

NAME
Notify.NoNotify — disable notifications

FUNCTION
If you set up a notify on an attibute to react on user input, you will also recognize
events when you change this attribute under program control with mui.Set (). Setting
Notify.NoNotify together with your attribute will prevent this notification from being
triggered.
Notify.NoNotify is a "one time" attribute. It’s only valid during the current mui.Set ()
call!

TYPE
Boolean

APPLICABILITY
S

30.10 Notify.NotifyData

NAME
Notify.NotifyData — set/get event specific user data

FUNCTION
This attribute allows you to define notification specific user data in an object. You have
to pass a string here that contains one or more notifications and user data for each
notification in the string. When a notification that is specified in the string is triggered,
the event handler callback will receive the user data specified in Notify.NotifyData in
the NotifyData field of the event message.
The string that you need to pass to this attribute must be formatted as follows: Name
of the notification attribute, followed by a colon, followed by a user data string, followed
by a semi-colon. The sequence may then be repeated as many times as it is requred.
For example: "Active: foo; DoubleClick: bar;". When the "Active" notification is
triggered, "foo" will be send to the event handler callback. When the "DoubleClick"
attribute triggers, "bar" will be sent.

See Section 3.6 [Notifications|, page 12, for details.

TYPE
Any

APPLICABILITY
ISG

30.11 Notify.Revision

NAME
Notify.Revision — get revision number of object class

Chapter 30: Notify class 179

FUNCTION
Get the revision number of an objects class. Although Notify.Revision is documented
at notify class, you will of course receive the revision number of the objects true class.

TYPE
Number

APPLICABILITY
G

30.12 Notify.UserData

NAME
Notify. UserData — set/get user data of object

FUNCTION
A general purpose value to fill in any kind of information. You can get this value
later directly from the object. This is a good mechanism to avoid having to use global
variables.

The user data you specify here will also be passed to your event handler callback that you
have installed using InstallEventHandler (). See Section 3.6 [Notifications|, page 12,
for details.

TYPE
Any

APPLICABILITY
ISG

30.13 Notify.Version

NAME
Notify. Version — get version number of object class

FUNCTION
Get the version number of an objects class. Although Notify.Version is documented
at notify class, you will of course receive the version number of the objects true class.

TYPE
Number

APPLICABILITY
G

181

31 Numericbutton class

31.1 Overview

This class is some kind of space-saving slider. It doesn’t have any extra attributes, but
you can simply use Slider class attributes with this class. See Section 44.1 [Slider class],
page 219, for details.

This class requires at least MUI Royale 1.5.

183

32 Popdrawer class

32.1 Overview

Popdrawer can be used to pop up a standard system asl drawer requester. A separate task
is spawned to handle the requesters, the application continues to run.

Popdrawer class will create a string gadget and a popup button for you. You don’t need
to worry about handling asl requesters. MUI will automatically open one when the popup
button is pressed and update the corresponding string gadget when the user terminates the
requester. From the programmer’s point of view, all you have to do is to handle the string
gadgets contents.

32.2 Popdrawer.Acknowledge

NAME
Popdrawer.Acknowledge — get notified when the user hits RETURN

FUNCTION
This attribute will be set to True whenever the user hits return in the string gadget. An
application can listen to this notification and take the appropriate action.
Using the TAB key or a mouse click to deactivate the gadget will not trigger
Popdrawer.Acknowledge.

TYPE
Boolean

APPLICABILITY
N

32.3 Popdrawer.Active

NAME
Popdrawer.Active — check if requester is still open

FUNCTION
Popdrawer creates asynchronous popups. Requesters are opened in a separately spawned
task and don’t disturb the rest of the application. You can ask for the state of a requester
by querying the Popdrawer.Active attribute. It will return True when the requester is
currently open, False otherwise.

Common use for this attribute is to prevent an application from being terminated while
a requester is open. If you try to dispose the Popdrawer object with a currently open
requester, MUI will freeze your task as long as the requester stays there.

TYPE

Boolean

APPLICABILITY
G

184 MUTI Royale manual

32.4 Popdrawer.AdvanceOnCR

NAME
Popdrawer.AdvanceOnCR — activate next object in cycle chain (V1.1)

FUNCTION
Set this if you want carriage returns in string gadgets behave like the TAB key, i.e.
pressing CR will activate the next/previous gadget in the cycle chain.

TYPE
Boolean

APPLICABILITY
ISG

32.5 Popdrawer.Contents

NAME
Popdrawer.Contents — set/get current popdrawer path

FUNCTION
Get and set the current path of this popdrawer object as shown in the string gadget’s
contents.

Popdrawer.Contents gets updated every time when the contents of the string gadget
change. When you set up a notification on this attribute, you will hear about every
keystroke.

TYPE
String

APPLICABILITY
ISGN

32.6 Popdrawer.SaveMode

NAME
Popdrawer.SaveMode — enable save mode

FUNCTION
Set this tag to True when the file requester is being used for saving. Default is False.

TYPE
Boolean

APPLICABILITY
I

Chapter 32: Popdrawer class

32.7 Popdrawer.Title

NAME
Popdrawer.Title — set requester title

FUNCTION

Set the title string for the ASL requester window.

TYPE
String

APPLICABILITY
I

185

187

33 Popfile class

33.1 Overview

Popfile can be used to pop up a standard system asl file requester. A separate task is
spawned to handle the requesters, the application continues to run.

Popfile class will create a string gadget and a popup button for you. You don’t need to
worry about handling asl requesters. MUI will automatically open one when the popup
button is pressed and update the corresponding string gadget when the user terminates the
requester. From the programmer’s point of view, all you have to do is to handle the string
gadgets contents.

33.2 Popfile.AcceptPattern

NAME
Popfile.AcceptPattern — set accept pattern

FUNCTION
Specifies an AmigaDOS pattern that is used to accept files. That is, only files with
names matching this pattern are included in the file list. Default is #7 which matches
everything.

TYPE
String

APPLICABILITY
I

33.3 Popfile.Acknowledge

NAME
Popfile.Acknowledge — get notified when the user hits RETURN

FUNCTION
This attribute will be set to True whenever the user hits return in the string gadget. An
application can listen to this notification and take the appropriate action.

Using the TAB key or a mouse click to deactivate the gadget will not trigger
Popfile.Acknowledge.

TYPE
Boolean

APPLICABILITY
N

188 MUTI Royale manual

33.4 Popfile.Active

NAME
Popfile.Active — check if requester is still open

FUNCTION
Popfile creates asynchronous popups. Requesters are opened in a separately spawned
task and don’t disturb the rest of the application. You can ask for the state of a requester
by querying the Popfile.Active attribute. It will return True when the requester is
currently open, False otherwise.

Common use for this attribute is to prevent an application from being terminated while a
requester is open. If you try to dispose the popfile object with a currently open requester,
MUT will freeze your task as long as the requester stays there.

TYPE
Boolean

APPLICABILITY
G

33.5 Popfile.AdvanceOnCR

NAME
Popfile. AdvanceOnCR — activate next object in cycle chain (V1.1)

FUNCTION
Set this if you want carriage returns in string gadgets behave like the TAB key, i.e.
pressing CR will activate the next/previous gadget in the cycle chain.

TYPE

Boolean

APPLICABILITY
ISG

33.6 Popfile.Contents

NAME
Popfile.Contents — set/get current popfile path

FUNCTION
Get and set the current path of this popfile object as shown in the string gadget’s
contents.
Popfile.Contents gets updated every time when the contents of the string gadget
change. When you set up a notification on this attribute, you will hear about every
keystroke.

TYPE
String

Chapter 33: Popfile class 189

APPLICABILITY
ISGN

33.7 Popfile.Pattern

NAME
Popfile.Pattern — set filter pattern for file requester

FUNCTION
Set the filter pattern for the file requester. Defaults to #7.

TYPE
String

APPLICABILITY
I

33.8 Popfile.RejectIcons

NAME
Popfile.RejectIcons — show/hide icon files

FUNCTION
Set this tag to True to cause the requester not to display Workbench icons. Default is
False.

TYPE
Boolean

APPLICABILITY
I

33.9 Popfile.RejectPattern

NAME
Popfile.RejectPattern — set reject pattern

FUNCTION
Specifies an AmigaDOS pattern that is used to reject files. That is, any files with names
matching this pattern are not included in the file list. Default is ~(#7) which matches
nothing.

TYPE
String

APPLICABILITY
I

190 MUTI Royale manual

33.10 Popfile.SaveMode

NAME
Popfile.SaveMode — enable save mode

FUNCTION
Set this tag to True when the file requester is being used for saving. Default is False.

TYPE
Boolean

APPLICABILITY
I

33.11 Popfile.ShowPattern

NAME
Popfile.ShowPattern — show/hide pattern gadget

FUNCTION
Set this tag to True to cause a pattern gadget to be displayed. Default is False.

TYPE
Boolean

APPLICABILITY
I

33.12 Popfile.Title

NAME
Popfile.Title — set requester title

FUNCTION
Set the title string for the ASL requester window.

TYPE
String

APPLICABILITY
I

191

34 Popfont class

34.1 Overview

Popfont can be used to pop up a standard system asl font requester. A separate task is
spawned to handle the requesters, the application continues to run.

Popfont class will create a string gadget and a popup button for you. You don’t need to
worry about handling asl requesters. MUI will automatically open one when the popup
button is pressed and update the corresponding string gadget when the user terminates the
requester. From the programmer’s point of view, all you have to do is to handle the string
gadgets contents.

Popfont class will display the font name and size separated by a slash in the string gadget,
e.g. topaz/8.

34.2 Popfont.Acknowledge

NAME
Popfont.Acknowledge — get notified when the user hits RETURN

FUNCTION
This attribute will be set to True whenever the user hits return in the string gadget. An
application can listen to this notification and take the appropriate action.

Using the TAB key or a mouse click to deactivate the gadget will not trigger
Popfont.Acknowledge.

TYPE
Boolean

APPLICABILITY
N

34.3 Popfont.Active

NAME
Popfont.Active — check if requester is still open

FUNCTION
Popfont creates asynchronous popups. Requesters are opened in a separately spawned
task and don’t disturb the rest of the application. You can ask for the state of a requester
by querying the Popfont.Active attribute. It will return True when the requester is
currently open, False otherwise.

Common use for this attribute is to prevent an application from being terminated while
a requester is open. If you try to dispose the Popfont object with a currently open
requester, MUI will freeze your task as long as the requester stays there.

TYPE
Boolean

192 MUTI Royale manual

APPLICABILITY
G

34.4 Popfont.AdvanceOnCR

NAME
Popfont.AdvanceOnCR — activate next object in cycle chain (V1.1)

FUNCTION
Set this if you want carriage returns in string gadgets behave like the TAB key, i.e.
pressing CR will activate the next/previous gadget in the cycle chain.

TYPE
Boolean

APPLICABILITY
ISG

34.5 Popfont.Contents

NAME
Popfont.Contents — set/get string gadget contents

FUNCTION
Get and set a string gadget’s contents. Popfont class uses a slash to separate font name
and size, e.g. topaz/8.

Popfont.Contents gets updated every time when the contents of the string gadget
change. When you set up a notification on this attribute, you will hear about every
keystroke.

TYPE
String

APPLICABILITY
ISGN

34.6 Popfont.FixedWidthOnly

NAME
Popfont.FixedWidthOnly — show only fixed width fonts

FUNCTION
Set this tag to True to cause the requester to only display fixed-width fonts. Default is
False.

TYPE
Boolean

Chapter 34: Popfont class

APPLICABILITY
I

34.7 Popfont.MaxHeight

NAME
Popfont.MaxHeight — set maximum font height

FUNCTION

The maximum font height to let the user select. Default is 24.

TYPE
Number

APPLICABILITY
1

34.8 Popfont.MinHeight

NAME
Popfont.MinHeight — set minimum font height

FUNCTION
The minimum font height to let the user select. Default is 5.

TYPE
Number

APPLICABILITY
1

34.9 Popfont.Title

NAME
Popfont.Title — set requester title

FUNCTION
Set the title string for the ASL requester window.

TYPE
String

APPLICABILITY
1

193

195

35 Poplist class

35.1 Overview

Poplist class simplifies creation of popups that contain just a simple list of predefined gadget
contents. Poplist class will create a string gadget and a popup button for you. Whenever
the user hits the popup button, a window containing a list of predefined entries will be
opened so that the user can choose one from the list.

When creating a poplist object, you have to use the <item> tag to fill it with entries. Here
is an example:
<poplist>
<item>The</item>
<item>quick</item>
<item>brown</item>
<item>fox</item>
<item>jumps</item>
<item>over</item>
<item>the</item>
<item>lazy</item>
<item>dog</item>
</poplist>

The list entries that you specify using the <item> tag can use text formatting codes. See
Section 3.9 [Text formatting codes]|, page 14, for details.

35.2 Poplist.Acknowledge

NAME
Poplist.Acknowledge — get notified when the user hits RETURN

FUNCTION
This attribute will be set to True whenever the user hits return in the string gadget. An
application can listen to this notification and take the appropriate action.

Using the TAB key or a mouse click to deactivate the gadget will not trigger
Poplist.Acknowledge.

TYPE
Boolean

APPLICABILITY
N

35.3 Poplist.AdvanceOnCR

NAME
Poplist.AdvanceOnCR — activate next object in cycle chain (V1.1)

196 MUTI Royale manual

FUNCTION
Set this if you want carriage returns in string gadgets behave like the TAB key, i.e.
pressing CR will activate the next/previous gadget in the cycle chain.

TYPE
Boolean

APPLICABILITY
ISG

35.4 Poplist.Contents

NAME
Poplist.Contents — set/get current poplist contents

FUNCTION
Get and set the current contents of this poplist object as shown in the string gadget’s
contents.
Poplist.Contents gets updated every time when the contents of the string gadget
change. When you set up a notification on this attribute, you will hear about every
keystroke.

TYPE
String

APPLICABILITY
ISGN

197

36 Poppen class

36.1 Overview
Poppen class adds input capabilities to its super class Pendisplay. It should be used if your
application allows users to configure some custom pens for rendering.

A Poppen object will appear as kind of a button which displays the currently selected color.
When the user hits the button, a Popup window containing a Penadjust object opens up
and lets the user choose change the color.

You can control the window title of the popup window using the Poppen.Title attribute on
the Poppen object. It will remember its value and use it when creating the popup window.
As most MUI popups, the Penadjust popup window runs asynchronously and stays there
until the user terminates it with "OK" or "Cancel". Furthermore, if the popup window is
automatically cancelled if the pop button’s root window gets closed.

You can get/set the current color from a Poppen object by using the Poppen.RGB attribute.

You can find some example code on using this class in the Class2 demo of the MUI distri-
bution.

36.2 Poppen.RGB

NAME
Poppen.RGB — set/get color

FUNCTION
Set or get the poppen color. If you set up a notification on this attribute, you will be
notified whenever the color changes. From the Hollywood script the color is specified
as a simple numerical value containing 8 bits for each component. When you specify
the color in the XML file, it has to be passed as a 6 character string prefixed by the
#-character (just like in HTML).

TYPE
Number

APPLICABILITY
ISGN

36.3 Poppen.Title

NAME

Poppen.Title — set/get popup window title
FUNCTION

Set or get the window title of the popup window.
TYPE

String

198 MUTI Royale manual

APPLICABILITY
ISG

199

37 Prop class

37.1 Overview

Prop class generates the well known proportional gadgets. It offers the same attributes as
a usual boopsi gadget of propgclass. However, MUI’s prop gadgets allow using any imagery
for the knob and for the background.

Note that this class won’t create any navigation buttons for the scrollbar. If you’d like to
have two navigation buttons to be connected with the scrollbar, use Scrollbar class instead.
See Section 42.1 [Scrollbar class], page 215, for details.

37.2 Prop.Decrease

NAME

Prop.Decrease — decrease value of prop gadget
SYNOPSIS

mui.DoMethod(id, "Decrease", amount)
FUNCTION

This method decreases the value of a proportional gadget by the specified amount. Neg-
ative values are ok. Range checking is done automatically.

INPUTS
id id of the application object
amount amount to substract from the gadget’s current position.

37.3 Prop.Entries

NAME
Prop.Entries — set/get number of entries

FUNCTION
Set or get the total number of entries.

TYPE
Number

APPLICABILITY
ISG

37.4 Prop.First

NAME
Prop.First — set/get number of first entry

FUNCTION
Set or get the number of the first entry.

200 MUTI Royale manual

TYPE
Number

APPLICABILITY
ISGN

37.5 Prop.Horiz

NAME
Prop.Horiz — set prop object direction

FUNCTION
Determine if you want a horizontal or a vertical prop gadget.
Defaults to False, i.e. vertical.

TYPE

Boolean

APPLICABILITY
IG

37.6 Prop.Increase

NAME

Prop.Increase — increase value of prop gadget
SYNOPSIS

mui.DoMethod(id, "Increase", amount)
FUNCTION

This method increases the value of a proportional gadget by the specified amount. Neg-
ative values are ok. Range checking is done automatically.

INPUTS
id id of the application object
amount amount to add to the gadget’s current position.

37.7 Prop.Slider

NAME
Prop.Slider — put prop into slider mode

FUNCTION
Indicate that this prop gadget is used in a slider. MUI might then use different imagery.
Since you really should use the slider class when creating sliders, you normally don’t
need to care about this attribute.

Chapter 37: Prop class 201

TYPE
Boolean

APPLICABILITY
ISG

37.8 Prop.UseWinBorder

NAME
Prop.UseWinBorder — put prop object into window border

FUNCTION
If you set this attribute some very special magic will take place with this proportional
gadget. In fact, it will not eat any display space at all or render anything, it stays
invisible in your windows GUI. Instead, the gadgets control and display will be linked
to one of the scrollbars in the window border.

There is no difference in talking to the object, you can use all prop gadget attributes
regardless whether its a real prop gadget or just a window border link. Of course, gadgets
in window borders will use the intuition look regardless what the user has configured.
You *must* enable border scrollers for the parent window with the corresponding at-
tributes before using Prop.UseWinBorder.

Obviously, you can only link exactly one prop gadget to one window scroller. Linking
more than one gadget to the same window scroller will result in big confusion.

The following values are recognized by this attribute:

Left Use left window border.

Right Use right window border.

Bottom Use bottom window border.
TYPE

String (see above for possible values)
APPLICABILITY

I

37.9 Prop.Visible

NAME
Prop.Visible — set/get number of visible entries

FUNCTION
Set or get the number of visible entries.

TYPE
Number

APPLICABILITY
ISG

203

38 Radio class

38.1 Overview

Radio class generates radio button gadgets. They do the same job as cycle gadgets and
eat up more window space, maybe that’s the reason why so few of them can be found in
existing applications.
When you declare a radio gadget, you have to use the <item> tag to fill the radio gadget
with items. Every radio gadget needs to have at least one item.
Here is an example XML excerpt for creating a radio gadget:
<radio id="printer">
<item>HP Deskjet</item>
<item>NEC P6</item>
<item>Okimate 20</item>
</radio>
The radio entries that you specify using the <item> tag can use text formatting codes. See
Section 3.9 [Text formatting codes]|, page 14, for details.

38.2 Radio.Active

NAME
Radio.Active — set/get active radio item

FUNCTION
This attributes defines the number of the active entry in the radio gadgets. Valid range
is from 0 for the first entry to NumEntries-1 for the last.

Setting Radio.Active causes the gadget to be updated. On the other hand, when the
user plays around with the gadget, Radio.Active will always reflects the current state.

TYPE
Number

APPLICABILITY
ISGN

205

39 Rectangle class

39.1 Overview

Rectangle class seems kind of useless since it does not define many attributes or methods
itself. However, objects of this type are frequently used in every application. They allow
insertion of space to control MUTI’s layout process.

You can use the attributes of the super class to control the size and other attributes of the
rectangle. E.g. you can use Area.FixWidth and Area.FixHeight to create rectangles of a
fixed size.
Rectangle objects are also often necessary as padding space next to objects which are not
resizable themselves. The <label> object is e.g. not resizable. To prevent these static label
objects from blocking the resizing feature of your whole GUI, you can simply pad them with
a <rectangle> object. Here is an example of a label next to a checkmark object, padded
using an invisible rectangle:
<hgroup>
<label>Enable hardware acceleration</label>
<checkmark/>
<rectangle/>
</hgroup>

39.2 Rectangle.BarTitle

NAME
Rectangle.BarTitle — define title text for horizontal bar

FUNCTION
This attribute describes a text string which will be displayed in group title style centered
in the rectangle. Really only makes sense if Rectangle.HBar is set to True.

TYPE
String

APPLICABILITY
IG

39.3 Rectangle.HBar

NAME
Rectangle. HBar — add horizontal bar to rectangle

FUNCTION
When set to True, MUI draws a horizontal bar in the middle of the rectangle. Such bars
can be used instead of group frames to separate objects in a window.

TYPE
Boolean

206 MUTI Royale manual

APPLICABILITY
IG

39.4 Rectangle.VBar

NAME
Rectangle.VBar — add vertical bar to rectangle

FUNCTION
When set to True, MUI draws a vertical bar in the middle of the rectangle. Such bars
can be used instead of group frames to separate objects in a window.

TYPE
Boolean

APPLICABILITY
IG

207

40 Register class

40.1 Overview

Register class is a special class for handling multi page groups. Using this class, you only
have to supply an array of groups, describing the register’s children. How these children
are visualized, either with a cycle gadget of with a register-like group, is the choice of the
user. You need to use the Group.Title attribute to give your register tabs titles.

Here is an example of a three page register group:

<register>
<vgroup title="Page 1">
<listview>
<column>
<item>Entry</item>
</column>
</listview>
</vgroup>
<vgroup title="Page 2">
<texteditor/>
</vgroup>
<vgroup title="Page 3">
<button>Click me</button>
</vgroup>
</register>

40.2 Register.ActivePage

NAME
Register.ActivePage — set/get active page of register group

FUNCTION
Set (or get) the active page of a register group. Only this active page is displayed, all
others are hidden.

The value may range from 0 (for the first child) to numchildren-1 (for the last child).
Children are adressed in the order of creation.

The following special values are possible when setting the active page:

First First page
Last Last page.
Prev Previous page.
Next Next page.

Advance Advance page.
Note: You may *never* supply an incorrect page value!

TYPE
Number or string (see above for possible values)

208 MUTI Royale manual

APPLICABILITY
ISGN

40.3 Register.AddPage

NAME
Register.AddPage — add new page to register (V1.2)

SYNOPSIS
mui.DoMethod(id, "AddPage", obj)

FUNCTION
This method can be used to add a new page to a register group. The new page specified
by "obj" must be a detached group object. This detached group object will then be
added as the register’s last page. After this method returns the specified group object
will change its state from detached to attached. That is why you must no longer use
functions that expect a detached object with this object now.

Detached MUI objects can be created either by calling the mui .CreateObject () function
or by explicitly detaching them from their parent by using the Register.ClosePage
method.

This feature requires at least MUI 4.0.

INPUTS
id id of the register object
obj id of the group object to add as a new page

40.4 Register.Closable

NAME
Register.Closable — add close gadget to register pages (V1.2)

FUNCTION
If you set this attribute to True, MUI will add close gadgets to each individual tab page.
When the user hits the close gadget, Register.CloseRequest will trigger.

This feature requires at least MUI 4.0.

TYPE

Boolean

APPLICABILITY
1

Chapter 40: Register class 209

40.5 Register.ClosePage

NAME

Register.ClosePage — remove page from register group (V1.2)
SYNOPSIS

mui.DoMethod(id, "ClosePage", obj)
FUNCTION

This method will close the page tab specified by "obj". The group object that consti-
tutes the page that is being closed will then change its state from attached to detached.
This means that you could attach it now to another register or group using a func-
tion like Group.Insert and Register.AddPage, respectively, or you could free it using
mui.FreeObject ().

This feature requires at least MUI 4.0.

INPUTS
id id of the register object
obj id of the page to remove

40.6 Register.CloseRequest

NAME
Register.CloseRequest — handle close request of page (V1.2)

FUNCTION
When the user hits a register page’s close gadget, the page isn’t closed immediately.
Instead MUI only sets this attribute to True to allow your application to react.

Usually, you will setup a notification that automatically closes the page when a close
request appears, but you could e.g. pop up a confirmation requester or do some other
things first.

This feature requires at least MUI 4.0.

TYPE
Boolean

APPLICABILITY
N

40.7 Register.GetPagelD

NAME
Register.GetPagelD — return ID of a page inside the register group (V1.2)

SYNOPSIS
id$ = mui.DoMethod(id, "GetPageID", idx)

210 MUTI Royale manual

FUNCTION
This method returns the ID of the page at the specified index within the register group.
"idx" can be an absolute number ranging from 0 to the number of pages in the register
minus 1 or it can be one of the following special values:

First First page.
Last Last page.
Active Active page.

This feature requires at least MUI 4.0.

INPUTS

id id of the register object

idx absolute index of desired page or special string constant (see above)
RESULTS

id$ id of the page object at the specified register index

40.8 Register.InsertPage

NAME
Register.InsertPage — insert new page into register (V1.4)

SYNOPSIS
mui.DoMethod(id, "InsertPage", obj, pos)

FUNCTION
This method can be used to insert a new page into a register group. The new page
specified by "obj" must be a detached group object. This detached group object will
then be inserted into the register position specified by "pos". This is an integer position
starting from 0 for the first page. After this method returns the specified group object
will change its state from detached to attached. That is why you must no longer use
functions that expect a detached object with this object now.

Detached MUI objects can be created either by calling the mui.CreateObject () function
or by explicitly detaching them from their parent by using the Register.ClosePage
method.

This feature requires at least MUI 4.0.

INPUTS
id id of the register object
obj id of the group object to insert as a new page

pos insertion position starting from 0 for the first page

Chapter 40: Register class 211

40.9 Register.Pages

NAME
Register.Pages — find out number of pages in register (V1.2)

FUNCTION
You can query this attribute to find out the current number of pages in the register
object.

This feature requires at least MUI 4.0.

TYPE
Number

APPLICABILITY
G

40.10 Register.Position
NAME
Register.Position — set position of page tabs (V1.2)

FUNCTION
This attribute allows you to configure whether the page tab browser should appear to
the top, left, right, or bottom of the pages.

The following values are recognized by this attribute:
Left Put tab browser to the left of the pages.
Right Put tab browser to the right of the pages.
Bottom Put tab browser to the bottom of the pages.
Top Put tab browser to the top of the pages.
This feature requires at least MUI 4.0.

TYPE
String (see above for possible values)

APPLICABILITY
1

213

41 Scale class

41.1 Overview

A Scale object generates a percentage scale running from 0% to 100%. A good place for
such an object is e.g. below a fuel gauge.

Depending on how much space is available, the scale will be more or less detailed.

Due to MUI’s automatic layout system, you don’t need to worry about it’s size. When
placed in a vertical group just below the object you want to scale, everything is fine.

Scale class is often used together with Gauge class. See Section 16.1 [Gauge class|, page 97,
for details.

41.2 Scale.Horiz

NAME
Scale.Horiz — set/get scale alignment

FUNCTION
Indicate whether you want a horizontal or a vertical scale.
Currently, only the horizontal scale is implemented.

TYPE
Boolean

APPLICABILITY
ISG

215

42 Scrollbar class

42.1 Overview

Scrollbar class creates a proportional gadget and two button gadgets with approriate im-
agery to make up a scrollbar. Since Scrollbar class is a subclass of Prop class, you can talk
and listen to a scrollbar as if it was just a single prop gadget. See Section 37.1 [Prop class]
page 199, for details.

This class requires at least MUI Royale 1.4.

42.2 Scrollbar.IncDecSize

NAME
Scrollbar.IncDecSize — set/get scrolling amount on button click (V1.4)

FUNCTION
Set the amount by which the scrollbar position is increased or decreased whenever one
of the arrow buttons is clicked. Defaults to 1.

TYPE
Number

APPLICABILITY
ISG

42.3 Scrollbar.Type

NAME
Scrollbar.Type — set scrollbar type (V1.4)

FUNCTION
Specify a certain scrollbar type. Normally, you should respect the users choice and avoid
using this attribute.

The following inputs are accepted:
Default Default type.

Bottom Bottom type.

Top Top type.

Sym Sym type.

None No type.
TYPE

String (see above for possible values)
APPLICABILITY

I

217

43 Scrollgroup class

43.1 Overview

Scrollgroup objects can be used to supply virtual groups with scrollbars. These scrollbars
automatically adjust according to the virtual and display sizes of the underlying virtual
group. When scrolling is unnecessary (i.e. the virtual group is completely visible), the
scrollers might get disabled or even disappear completely, depending on the users preferences
settings.

It is important to note that scrollgroup objects do not work with normal groups. Instead,
you need to give them a virtual group as a child, i.e. you need to use the <virtgroup> tag
to create a MUI object of type Virtgroup class. See Section 50.1 [Virtgroup class|, page 277,
for details.

Here is an XML example:

<scrollgroup>
<virtgroup>
<radio>
<item>Amiga 500</item>
<item>Amiga 1200</item>
<item>Amiga 4000</item>
</radio>
<listview>
<column/>
</listview>
</virtgroup>
</scrollgroup>

The XML code above embeds a radio and a listview object inside a virtual group which in
turn is embedded inside a scrollgroup.

43.2 Scrollgroup.FreeHoriz

NAME
Scrollgroup.FreeHoriz — allow horizontal scrolling

FUNCTION
Specify if a scroll group should be horizontally moveable. Defaults to True.

TYPE
Boolean

APPLICABILITY
I

218 MUTI Royale manual

43.3 Scrollgroup.FreeVert

NAME
Scrollgroup.FreeVert — allow vertical scrolling

FUNCTION
Specify if a scroll group should be vertically moveable. Defaults to True.

TYPE
Boolean

APPLICABILITY
I

43.4 Scrollgroup.UseWinBorder

NAME
Scrollgroup.UseWinBorder — use window scrollbars for this scroll group

FUNCTION
If you set this to True, MUI will automatically make this scrollgroup controllable from
gadgets in the window border. MUI will use the right border scroller if the virtual groups
is allowed to move vertically and the bottom border scroller if the virtual group is allowed
to move horizontally.

You must set the corresponding window attributes, e.g. you have to set the attribute
Window.UseRightBorderScroller for your parent window to use this feature.

TYPE
Boolean

APPLICABILITY
1

219

44 Slider class

44.1 Overview

The slider class generates a GUI element that allows a user to adjust a numeric value. The
programmer doesn’t have very much influence on the slider’s outfit, there are only very few
tags available. Future versions of MUI will probably include some preferences options to
allow the user (*not* the programmer) to configure this outfit.

Note that since slider is a subclass of group class, you can get horizontal or vertical sliders
by simply using the Slider.Horiz attribute. Default is a horizontal slider.

Here is an XML example of a slider that allows the user to configure a number ranging from
0 to 100:

<slider min="0" max="100"/>

44.2 Slider.Format

NAME
Slider.Format — customize slider text

FUNCTION
A template string to describe the format of the slider display. Whenever Slider.mui
thinks it’s time to render a new value, it doesn’t simply write it to a string but uses the
format mask specified in this attribute to compose the new string that is then rendered
to the slider display. Any "%Id" in the format string is replaced by the current slider
level.

Note well: The maximum length of the result string for Slider.Format is limited to 32
characters. If you need more, you must use Slider.Stringify.

Slider.Format defaults to "%ld".
The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes|, page 14, for details.

TYPE
String

APPLICABILITY
ISG

EXAMPLE
mui.Set(obj, "Format", "Custom text: %1d")

The code above sets the slider text to "Custom text" followed by the current slider level.

44.3 Slider.Horiz

NAME
Slider.Horiz — set/get alignment of slider

220

FUNCTION

MUTI Royale manual

Specify if you want a horizontal or vertical slider.

TYPE
Boolean

APPLICABILITY
ISG

44.4 Slider.Level

NAME
Slider.Level — set/get current slider level

FUNCTION

The current position of the slider knob.

Slider.Min and Slider.Max.

TYPE
Number

APPLICABILITY
ISGN

44.5 Slider.Max
NAME

Slider.Max — set/get maximum level of slider

FUNCTION

This value is guaranteed to be between

Adjust the maximum value for a slider object.

TYPE
Number

APPLICABILITY
ISG

44.6 Slider.Min
NAME

Slider.Min — set/get minimum level of slider

FUNCTION

Adjust the minimum value for a slider object. Of course you can use negative number,

e.g. for a slider to adjust task priority.

TYPE
Number

Chapter 44: Slider class 221

APPLICABILITY
ISG

44.7 Slider.Pressed

NAME
Slider.Pressed — learn when slider knob is pressed (V1.5)

FUNCTION
This attribute is triggered when the user presses the slider knob.

TYPE
Boolean

APPLICABILITY
N

44.8 Slider.Quiet

NAME
Slider.Quiet — hide current level from slider

FUNCTION

When set to True, the slider doesn’t display it’s current level in a text object.

TYPE
Boolean

APPLICABILITY
I

44.9 Slider.Reverse

NAME
Slider.Reverse — reverse direction of slider

FUNCTION
Setting this attribute to True will reverse the direction of the slider.

TYPE
Boolean

APPLICABILITY
ISG

222 MUTI Royale manual

44.10 Slider.Stringify

NAME
Slider.Stringify — setup callback for custom slider text

FUNCTION
This attribute can be used to set up a callback function that transforms a slider level
into a custom slider text. The callback function you specify here will be called like a
standard MUI Royale event callback, but with the following extra argument:

Value: Contains the current slider level.

Your callback function then has to return a string that should be displayed in the slider
gadget. You might e.g. want to display a nice formatted time string (hh:mm:ss) in a
slider which adjusts a number of seconds. Or you need to adjust a baudrate from a hand
of predefined values. Just use Slider.Stringify and you have the choice how the slider
value translates into a string.

Note that you always have to pass a string specifying the name of a Hollywood function
to this attribute. Never pass the function directly but always pass the name of the
function as a string!

Also note that you must also set up a notification on this attribute. Otherwise the
callback function will never get called.

See Section 3.6 [Notifications|, page 12, for details.

TYPE
String

APPLICABILITY
ISGN

EXAMPLE
<slider nOtify:"stringify" Stringify="p_Callback" min="0" max="64"
level="32" format="--Full--"/>

Function p_Callback(msg)
If msg.value = O Then Return("Mute")
If msg.value = 64 Then Return("Full")
Return(msg.value)

EndFunction

The code above creates a slider for controlling sound volume. If the slider is all the way
to the left, "Mute" will be displayed. If it is all the way to the right, "Full" will be
displayed. Note that we use the "Format" tag in the XML file to specify an initial width
for the slider knob so that it is large enough for all strings that are going to be returned
by our callback.

223

45 String class

45.1 Overview

String class generates standard string gadgets with all editing facilities (clear, undo, etc.)
enabled. By default, string gadgets do not have any label next to them. If you want to
have a label next to your string gadget, you need to put it into a <hgroup> and then use
Label class or Text class class to put a label next to it.

Here is an XML example of a string gadget:

<string id="mystring" contents="Enter something!"/>

45.2 String.Accept

NAME
String.Accept — set/get characters accepted by string gadget

FUNCTION
A string containing characters allowed as input for the string gadget. Whenever the user
hits a character not found in String.Accept, he will hear a beep and gadgets contents
won’t have changed.

TYPE
String

APPLICABILITY
ISG

EXAMPLE
mui.Set(obj, "Accept", "0123456789-")
The above code will set a string gadget to only accept numbers and hyphens.

45.3 String.Acknowledge

NAME
String.Acknowledge — get notified when the user hits RETURN

FUNCTION
This attribute will be set to True whenever the user hits return in the gadget. An
application can listen to this notification and take the appropriate action.

Using the TAB key or a mouse click to deactivate the gadget will not trigger
String.Acknowledge.

TYPE
Boolean

APPLICABILITY
N

224 MUTI Royale manual

45.4 String.AdvanceOnCR

NAME
String.AdvanceOnCR — activate next object in cycle chain

FUNCTION
Set this if you want carriage returns in string gadgets behave like the TAB key, i.e.
pressing CR will activate the next/previous gadget in the cycle chain.

TYPE
Boolean

APPLICABILITY
ISG

45.5 String.Contents

NAME
String.Contents — set/get string gadget contents

FUNCTION
Get and set a string gadgets contents.

String.Contents gets updated every time when the contents of the string gadget change.
When you set up a notification on this attribute, you will hear about every keystroke.

If you try to set contents to something larger than String.MaxLen MUI will silently
strip the additional characters.

TYPE
String

APPLICABILITY
ISGN

45.6 String.Copy

NAME

String.Copy — copy marked text (V1.3)
SYNOPSIS

mui.DoMethod(id, "Copy")
FUNCTION

Copy currently selected text to clipboard.
This method requires MUI 4.0 or better.

INPUTS
id id of the string object

Chapter 45: String class 225

45.7 String.CursorPos

NAME
String.CursorPos — set/get cursor position (V1.3)

FUNCTION
Sets the current cursor position.
This attributes requires MUI 4.0 or better.

TYPE
Number

APPLICABILITY
SG

45.8 String.Cut

NAME

String.Cut — cut marked text (V1.3)
SYNOPSIS

mui.DoMethod(id, "Cut")
FUNCTION

Cut currently selected text and put it in the clipboard.
This method requires MUI 4.0 or better.

INPUTS
id id of the string object

45.9 String.Insert

NAME

String.Insert — insert text (V1.3)
SYNOPSIS

mui.DoMethod(id, "Insert", t$)
FUNCTION

This will insert the given text t$ at the current cursor position.
This method requires MUI 4.0 or better.

INPUTS
id id of the string object

t$ text to insert

226 MUTI Royale manual

45.10 String.MarkEnd

NAME
String.MarkEnd — set/get end position of marked text (V1.3)

FUNCTION
Sets the end position of marked text. Set this to -1 to remove any text marking.
This attributes requires MUI 4.0 or better.

TYPE
Number

APPLICABILITY
ISG

45.11 String.MarkStart

NAME
String.MarkStart — set/get start position of marked text (V1.3)

FUNCTION
Sets the start position of marked text. Set this to -1 to remove any text marking.
This attributes requires MUI 4.0 or better.

TYPE
Number

APPLICABILITY
ISG

45.12 String.MaxLen

NAME
String.MaxLen — set/get maximum length of string

FUNCTION
Setup the maximum length for the string gadget. This attribute is only valid at object
creation time.

Default maximum length is 80.
NOTE: The maximum length includes the 0-byte at the end of the string. To let the
user enter e.g. 10 characters, you would have to specify a maxlen of 11.

TYPE
Number

APPLICABILITY
1G

Chapter 45: String class 227

45.13 String.Paste

NAME

String.Paste — paste text from clipboard (V1.3)
SYNOPSIS

mui.DoMethod(id, "Paste")
FUNCTION

Pastes text from clipboard into the string gadget.
This method requires MUI 4.0 or better.

INPUTS
id id of the string object

45.14 String.Redo

NAME

String.Redo — redo last operation (V1.3)
SYNOPSIS

mui.DoMethod(id, "Redo")
FUNCTION

Redo last operation of string gadget.
This method requires MUI 4.0 or better.

INPUTS
id id of the string object

45.15 String.Reject

NAME
String.Reject — set/get characters rejected by string gadget

FUNCTION
A string containing characters that should not be accepted as input for the string gadget.
Whenever the user hits such a char, he will hear a beep and gadgets contents won’t have
changed.

TYPE
String
APPLICABILITY
ISG
EXAMPLE
mui.Set(obj, "Reject", "0123456789")

The above code will set a string gadget to reject numbers.

228 MUTI Royale manual

45.16 String.Secret

NAME
String.Secret — hide user input

FUNCTION
This attribute causes the string gadget to display only dots instead of the real contents.
Useful for password requesters.

TYPE
Boolean

APPLICABILITY
IG

45.17 String.Undo

NAME

String.Undo — undo last operation (V1.3)
SYNOPSIS

mui.DoMethod(id, "Undo")
FUNCTION

Undo last operation of string gadget.
This method requires MUI 4.0 or better.

INPUTS
id id of the string object

229

46 Text class

46.1 Overview

Text class allows generating objects that contain some kind of text. You can control the
outfit of your text with some special control characters, including italics, bold, underline and
color codes. Format codes align text either left, centered or right, linefeeds allow multiline
text fields.

Please note that text class does not offer automatic word wrapping. If you want to have on-
the-fly word wrapping, you have to use floattext class instead. See Section 15.1 [Floattext],
page 95, for details.

Here is an example of how to use the <text> command:
<text>Hello World</text>

Here is the same example in bold:
<text>\33bHello World</text>

The string you specify here can use text formatting codes. See Section 3.9 [Text formatting
codes|, page 14, for details.

46.2 Text.Contents

NAME
Text.Contents — set/get text object contents

FUNCTION
String to be displayed in a text object.

If the string is larger than available display space, it will be clipped. Setting
Text.Contents to "" results in an empty text object.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes], page 14, for details.

TYPE
String

APPLICABILITY
SG

46.3 Text.HiChar

NAME
Text.HiChar — highlight single character

FUNCTION
If the character given here exists in the displayed string (no matter if upper or lower
case), it will be underlined. This is useful in connection with Area.ControlChar.

TYPE
Single character string

230 MUTI Royale manual

APPLICABILITY
I

46.4 Text.PreParse

NAME
Text.PreParse — set/get preparse string for text object

FUNCTION
String containing format definitions to be parsed before the text from Text.Contents is
printed.

Using this tag, you can easily define different formats, colors and styles without modifying
the original string. For example, if you set Text.PreParse to "\33c", the text in the
text object will always be centered.

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes], page 14, for details.

TYPE
String

APPLICABILITY
ISG

46.5 Text.SetMax

NAME
Text.SetMax — limit maximum width

FUNCTION
Boolean value to indicate whether the object’s maximal width shall be calculated to fit
the string given with Text.Contents.

When set to False, maximum width is not limited.

For a text object that needs to be updated (e.g. some information about your programs
status) you would probably set Text.SetMax to False to allow resizing of this object.

For a label for one of your gadgets, you might want to give this tag a value of True to
prevent MUI from inserting additional layout space.

Defaults to False.

TYPE
Boolean

APPLICABILITY
I

Chapter 46: Text class 231

46.6 Text.SetMin

NAME
Text.SetMin — set a minimum width for text object

FUNCTION
Boolean value to indicate wether the objects minimal width shall be calculated to fit the
string given with Text.Contents.

When set to False, minimum width will be set to 0 and the displayed string may be
clipped.

Defaults to True.

TYPE
Boolean

APPLICABILITY
I

46.7 Text.SetVMax

NAME
Text.SetVMax — limit object height

FUNCTION
Settings this to False makes a TextObjects y-size unlimited. Defaults to True which
means the objects height is fixed.

TYPE
Boolean

APPLICABILITY
I

233

47 Texteditor class

47.1 Overview

TextEditor.mcc is a multiline string gadget which holds most of the functions of a normal
text editor including some special functionality for importing/exporting text from/to special
formats.

The gadget was originally written in 1997 by Allan Odgaard. As of version 15.10, released
in April 2005, the gadget is maintained by the TextEditor.mcc Open Source team.

It is released and distributed under the terms of the GNU Lesser General Public License
(LGPL) and available free of charge.

Please visit http://www.sf.net/projects/texteditor-mcc/ for the very latest version
and information regarding TextEditor.mcc.

Here is an XML example of how to include a text editor object in your GUI:

<texteditor scrollbar="true" contents="Enter your text here!"/>

47.2 Texteditor.ActiveObjectOnClick

NAME
Texteditor.ActiveObjectOnClick — automatically become active object

FUNCTION
This tag allows to set/get whether the texteditor object is automatically set the
Window.ActiveObject object of the window in case the user performs a mouse action
(click/select) in the texteditor. As a consequence, the texteditor will then get the full
keyboard focus and will eventually signal its active status by highlighting a marked
area with the active color rather than using the inactive marked color in inactive state.

Please note that depending on the Texteditor.ReadOnly setting, this attribute has
different default values. In case the texteditor is set to Texteditor.ReadOnly while
initialized this attribute will be set to False as a default. In contrast, when the object
is in full write mode it will be set to True instead. However, during operation this
behaviour can be overridden by setting this attribute to another value.

TYPE
Boolean

APPLICABILITY
ISG

47.3 Texteditor.Align
NAME

Texteditor.Align — set/get current paragraph’s alignment

FUNCTION
Set/get the current paragraph’s alignment.

http://www.sf.net/projects/texteditor-mcc/

234 MUTI Royale manual

If an area is marked while you set this attribute, then the new alignment will be set for
the complete area.

The following values are possible:

Left Left alignment.

Right Right alignment.

Center Centered alignment.

Justified

Justified alignment (not implemented yet).

TYPE

String (see above for possible values)
APPLICABILITY

SGN

47.4 Texteditor.AreaMarked

NAME
Texteditor.AreaMarked — learn about marked areas

FUNCTION
This tag will be set to True when text is marked, and back to False when nothing
is marked. You can create a notify event with this tag and let your cut/copy buttons
become ghosted when nothing is marked.

TYPE
Boolean

APPLICABILITY
GN

47.5 Texteditor.AutoClip

NAME
Texteditor.AutoClip — enable/disable auto clipboard copy

FUNCTION
When the gadget is in read only mode and the user marks some text, then it will be
automatically copied to the clipboard. With this tag you can disable that behaviour, but
think twice, because the configured ’copy’ key (which the user normally uses to copy text)
will only function when the gadget is active (or default) which it won’t automatically
become in read only mode (when clicked).

TYPE
Boolean

APPLICABILITY
ISG

Chapter 47: Texteditor class 235

47.6 Texteditor.Clear

NAME

Texteditor.Clear — clear text
SYNOPSIS

mui.DoMethod(id, "Clear")
FUNCTION

This will clear all the text in the gadget.
INPUTS

id id of the text editor object

47.7 Texteditor.Color

NAME
Texteditor.Color — set/get current text color (V1.2)

FUNCTION
This attribute can be used to set/get the current text color. Any text entered after
setting this attribute will appear in the specified color. To change the color of existing
text, use the Texteditor.SetColor method instead.

You can also setup a notification on this attribute to learn when the cursor has been
moved over text in a different color.

From the Hollywood script the color is specified as a simple numerical value containing
8 bits for each component. When you specify the color in the XML file, it has to be
passed as a 6 character string prefixed by the #-character (just like in HTML).

TYPE
Number

APPLICABILITY
SGN

47.8 Texteditor.ColorMap

NAME
Texteditor.ColorMap — get text editor’s current color map (V1.2)

FUNCTION
This attribute can be used to get the editor’s current color map. As Texteditor class is
still palette-based, this will always return a table containing 256 entries that describe
which colors the text editor’s pens map to. This is needed if you want to identify colors
used in a text returned by Texteditor.Contents. If a text uses different colors, you
will only get the information about the different pens used by the text. You can then
use this table to map the pen information to RGB colors.

TYPE
Table

236 MUTI Royale manual

APPLICABILITY
G

47.9 Texteditor.Columns

NAME
Texteditor.Columns — set desired gadget width

FUNCTION
Set the desired width, in characters.

TYPE
Number

APPLICABILITY
I

47.10 Texteditor.Contents

NAME
Texteditor.Contents — set/get text editor contents

FUNCTION
Use this attribute to set or get the contents of the texteditor object.
The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes], page 14, for details.

TYPE
String

APPLICABILITY
ISG

47.11 Texteditor.ConvertTabs

NAME
Texteditor.ConvertTabs — convert tabs to spaces

FUNCTION
When True (default) TextEditor will convert tabs (\t) to the number of spaces specified
by the user configuration setting. If False, TextEditor will instead put pure \t characters
and just display spaces to the user.

Please note that a change of this attribute from True to False will cause an update of
editor gadget (but cursor coordinates will be reset to zeroes).

TYPE
Boolean

Chapter 47: Texteditor class 237

APPLICABILITY
ISG

47.12 Texteditor.Copy

NAME

Texteditor.Copy — copy marked text
SYNOPSIS

mui.DoMethod(id, "Copy")
FUNCTION

Copy currently selected text to clipboard.
INPUTS

id id of the text editor object

47.13 Texteditor.CursorX

NAME
Texteditor.CursorX — set/get cursor x position

FUNCTION
You can get or set the cursor’s X position with this tag. The first character on a line has
position 0. The position is not affected by the gadget’s autowrap feature. If you set a
value higher than the length of the current line, then it will be automatically truncated.

TYPE
Number

APPLICABILITY
ISGN

47.14 Texteditor.CursorY

NAME
Texteditor.CursorY — set/get cursor y position

FUNCTION
You can get or set the cursor’s Y position with this tag. The first line has position 0.
The position is not affected by the gadget’s autowrap feature. If you set a value higher
than the number of lines, then it will be automatically truncated.

TYPE
Number

APPLICABILITY
ISGN

238 MUTI Royale manual

47.15 Texteditor.Cut

NAME
Texteditor.Cut — cut marked text
SYNOPSIS
mui.DoMethod(id, "Cut")
FUNCTION
Cut currently selected text and put it in the clipboard.
INPUTS
id id of the text editor object

47.16 Texteditor.Erase

NAME

Texteditor.Erase — erase all text
SYNOPSIS

mui.DoMethod(id, "Erase")
FUNCTION

Erases all text in the text editor gadget.
INPUTS

id id of the text editor object

47.17 Texteditor.ExportHook

NAME
Texteditor.ExportHook — set text editor’s export hook (V1.4)

FUNCTION
Depending on the inputs a different export hook will be fired as soon as text is exported
from the text editor gadget. The default is to export the currently shown data as is.
That means, that all text, including the escape sequences for showing soft styles will be
exported.

You can change this behaviour by setting this attribute. The following export hooks are
recognized:

Plain Export all text as displayed, including escape sequences ("\33’). This is the
default mode.

EMail Export all text, but convert the soft-style escape sequences into the pseudo-
standard text sequences like:
bold : for bold text
/italic/ : for italic text
underline : for underlined text

Chapter 47: Texteditor class 239

#colored# : for colored/highlighted text
<tsb> : for a thick separator bar
<sb> : for a thin separator bar

NoStyle Export all text like the Plain variant, but strip off all style relevant es-
cape sequences. Also converts the escape sequences for the thick and thin
separator bar into <tsb> and <sb> like the EMail hook.

See Section 47.23 [Texteditor.ImportHook]|, page 241, for details.

TYPE
String (see above for possible values)

APPLICABILITY
IS

47.18 Texteditor.ExportWrap

NAME
Texteditor.ExportWrap — use hard word wrapping

FUNCTION
This attribute allows the built-in export hooks to perform hard word wrapping while
exporting text. Zero means no wrap (default value).

Please note that Texteditor.WrapMode doesn’t have any effect on the way the export
function works. That means, setting Texteditor.ExportWrap will always end up in
hard word wrapping.

TYPE
Number

APPLICABILITY
ISG

47.19 Texteditor.FixedFont

NAME
Texteditor.FixedFont — use fixed width font

FUNCTION
Set this if you would like the editor to use a fixed width font.

TYPE
Boolean

APPLICABILITY
IG

240 MUTI Royale manual

47.20 Texteditor.GetSelection

NAME

Texteditor.GetSelection — get block selection
SYNOPSIS

x1, y1, x2, y2 = mui.DoMethod(id, "GetSelection")
FUNCTION

This method returns the start and stop position of the currently marked block. If there
is no marked area, -1 is returned in all four values.

INPUTS
id id of the text editor object
RESULTS
x1 start x position of marked block
y1 start y position of marked block
x2 stop x position of marked block
y2 stop y position of marked block

47.21 Texteditor.GetText

NAME

Texteditor.GetText — export portion of the current text (V1.1)
SYNOPSIS

t$ = mui.DoMethod(id, "GetText", x1, yl, x2, y2)
FUNCTION

This method exports portions of the current text and returns it. The method accepts
four coordinates which permits you to retrieve a block of text without it being currently
marked. This is useful to analyze a block without the user seeing a similar behaviour to
marking a block.

INPUTS
id id of the text editor object
x1 start x position of desired block
yi start y position of desired block
x2 stop x position of desired block
y2 stop y position of desired block
RESULTS

t$ text at the specified block coordinates

Chapter 47: Texteditor class 241

47.22 Texteditor.HasChanged

NAME
Texteditor.HasChanged — learn about content change

FUNCTION
This tag will show if the contents of the gadget have changed. You can take notify on
this tag, so that you can connect it with a checkmark or text object.

You should set this tag to False whenever you export the contents of the gadget or
overwrite them with something new.

Even if you have set up notification on this tag, you should still get it before you kill
the text, because this makes it possible to do some advanced testing to see if the text
has actually been modified, e.g. by checking the undo buffer, comparing checksums or
checking whether or not the text buffer is empty (none of this is currently done, but it
may be in the future).

TYPE
Boolean

APPLICABILITY
ISGN

47.23 Texteditor.ImportHook

NAME
Texteditor.ImportHook — set text editor’s import hook (V1.4)

FUNCTION
Since this gadget allows different text styles, you can supply an import hook to parse
the text correctly.

The default import hook understands the following escape sequences. They may appear
at any position within the line:

\33u Set the soft style to underline.
\33b Set the soft style to bold.

\33i Set the soft style to italic.

\33n Set the soft style back to normal.
\33h Highlight the current line.

\33p[x] Change to color x, where x is taken from the colormap. 0 means normal.
The color is reset for each new line.

\33P [RRGGBB]
Change front color to the specified RGB color. The RGB color has to be
specified in the form of six hexadecimal digits RRGGBB. This is only possible
on true colour screens. The color is reset for each new line.

242

MUTI Royale manual

\33P [AARRGGBB]

Change front color to the specified RGB color and apply alpha blending at
the specified intensity. The RGB color has to be specified in the form of
six hexadecimal digits RRGGBB which have to be prefaced with two alpha
channel digits AA specifying the blending intensity. This is only possible on
true colour screens. The color is reset for each new line.

The following sequences are only valid at the beginning of a line. If they are placed
elsewhere, the result is undefined (they might be ignored or not):

\331
\33r
\33c
\33[s:x]

Left justify current and following lines.

Right justify current and following lines.

Center current and following lines.

Create a separator. x is a bit combination of flags:

Bit 0 set Top placement of separator.

Bit 1 set Middle placement of separator.

Bit 2 set Bottom placement of separator.

Bit 3 set Draw separator on top of text (strike through).

Bit 4 set Make separator extra thick.

The following values may be passed to this attribute:

Plain

MIME

MIMEQuoted

EMail

Use default import mode (see above).

This built-in hook will convert quoted-printables (e.g. "=E5") to the ASCII
representation, merge lines ending with a "=", wordwrap the text (using
the value set with TextEditor.ImportWrap), highlight all lines that start
with ">", make real *bold*, /italic/, _underline_ and #colored# text, and
replace <sb> or <tsb> with a real separator bar. It will stop parsing upon
reaching a NULL byte.

The color used for #colored# text is colormap entry 6, which defaults to
MPEN_FILL. To override it, just supply a colormap with entry 6 set to what-
ever color you would like.

Like the MIME import hook, but each line gets quoted and highlighted.
Like the MIME import hook, but it doesn’t convert quoted printables.

Note, that the last three hooks also evaluate the escape sequences described for the Plain
import hook type. While it never was documented there are some programs insisting
on this side effect of an old implementation. Hence starting with version 51.13 this
behaviour had to be official supported.

TYPE

String (see above for possible values)
APPLICABILITY

IS

Chapter 47: Texteditor class 243

47.24 Texteditor.ImportWrap

NAME
Texteditor.Import Wrap — perform automatic word wrapping on import

FUNCTION
This attribute allows the built-in import hooks to perform automatic word wrapping
when importing text.

The built-in hooks accept a value between 4 and 1024. Default is 1023.

Please note that Texteditor.WrapMode doesn’t have any effect on the way the import
function works. That means, setting Texteditor.ImportWrap will always end up in
hard word wrapping.

TYPE

Number

APPLICABILITY
ISG

47.25 Texteditor.Insert

NAME

Texteditor.Insert — insert text
SYNOPSIS

mui.DoMethod(id, "Insert", t$, pos$)
FUNCTION

This will insert the given text t$ at the specified position. The position of the inserted
text can be one of the following:

Cursor Insert at current cursor position.
Top Insert at the top.

Bottom Insert at the bottom.

INPUTS
id id of the text editor object
t$ text to insert
pos$ insert position (see above for possible values)

47.26 Texteditor.Mark

NAME
Texteditor.Mark — mark text

SYNOPSIS
mui.DoMethod(id, "Mark", start_x, start_y, stop_x, stop_y)

244

FUNCTION

MUTI Royale manual

This method will mark (select) the given area specified by the start_x / stop_x, start_y

/ stop_y rectangular.

INPUTS
id id of the text editor object

start_x start x position
start_y start y position
stop_x stop x position

stop_y stop y position

47.27 Texteditor.MarkAll

NAME

Texteditor.MarkAll — mark all text
SYNOPSIS

mui.DoMethod(id, "MarkAll")
FUNCTION

Marks all text in the gadget.
INPUTS

id id of the text editor object

47.28 Texteditor.MarkNone

NAME
Texteditor.MarkNone — clear text selection

SYNOPSIS
mui.DoMethod(id, "MarkNone")

FUNCTION
Clears text selection.

INPUTS
id id of the text editor object

47.29 Texteditor.Paste

NAME
Texteditor.Paste — paste text from clipboard

SYNOPSIS
mui.DoMethod(id, "Paste")

Chapter 47: Texteditor class 245

FUNCTION

Pastes text from clipboard into the text editor gadget.
INPUTS

id id of the text editor object

47.30 Texteditor.PasteColors

NAME
Texteditor.PasteColors — ignore color information on paste

FUNCTION
Setting this tag to False will ignore any color information upon pasting a text clip from
the clipboard.

TYPE
Boolean

APPLICABILITY
ISG

47.31 Texteditor.PasteStyles

NAME
Texteditor.PasteStyles — ignore style information on paste

FUNCTION
Setting this tag to False will ignore any style information upon pasting a text clip from
the clipboard.

TYPE
Boolean

APPLICABILITY
ISG

47.32 Texteditor.ReadOnly

NAME
Texteditor.ReadOnly — put text editor in read-only mode

FUNCTION
Setting this tag to True will make the text read-only. This is very similar to what
Floattext.mui provides, except that this gadget offers blocking.

In read-only mode:
— there will be no cursor (only a normal TAB frame),
— TAB will activate the next gadget (instead of RCOMMAND+TAB),

246 MUTI Royale manual

— the frame will be set to a ReadListFrame (may change),
— there is no ARexx support, except "Copy".

TYPE
Boolean

APPLICABILITY
ISG

47.33 Texteditor.Redo

NAME

Texteditor.Redo — redo last operation
SYNOPSIS

mui.DoMethod(id, "Redo")
FUNCTION

Redo last operation of text editor gadget.
INPUTS

id id of the text editor object

47.34 Texteditor.RedoAvailable

NAME
Texteditor.RedoAvailable — learn when redo is available

FUNCTION
This tag is set to True when the user is able to redo his action(s) (normally after an
undo). You can create a notify on this tag and let your redo button be ghosted when
there is nothing to redo.

TYPE
Boolean

APPLICABILITY
GN

47.35 Texteditor.Replace

NAME

Texteditor.Replace — replace marked text with string
SYNOPSIS

mui.DoMethod(id, "Replace", r$)
FUNCTION

This method replaces the marked area with the given string.

Chapter 47: Texteditor class 247

INPUTS
id id of the text editor object
r$ replacement string

47.36 Texteditor.Rows

NAME
Texteditor.Rows — set desired gadget height

FUNCTION
Set the desired height, in lines.

TYPE
Number

APPLICABILITY
I

47.37 Texteditor.Scrollbar

NAME
Texteditor.Scrollbar — add scrollbar to editor

FUNCTION
If you set this attribute to True, your texteditor object will get a scrollbar. Defaults to
False.

TYPE
Boolean

APPLICABILITY
I

47.38 Texteditor.Search

NAME

Texteditor.Search — search for text
SYNOPSIS

r = mui.DoMethod(id, "Search", s$, flags$)
FUNCTION

Search the text for the given string. The string must not exceed 120 characters.

Flags can be a combination of:

FromTop Normally the search starts at the cursor position - this flag will make it start
at the beginning of the text.

248 MUTI Royale manual

CaseSensitive
If you want the search to be case sensitive, then set this flag.

Backwards
With this flag TextEditor will perform a backward search from cursor posi-
tion.

If you specify multiple of the flags above, you have to separate them using a semicolon,
e.g. "FromTop; CaseSensitive".

If the string is found, it will be automatically marked. Thus, in case you want to replace
it, simply clear the marked string and insert the new one.

INPUTS

id id of the text editor object

s$ string to search for

flags$ one or more of the flags listed above
RESULTS

r True if the string was found, otherwise False

47.39 Texteditor.SetBold

NAME

Texteditor.SetBold — toggle bold style of text block
SYNOPSIS

mui.DoMethod(id, "SetBold", startx, starty, stopx, stopy, flag)
FUNCTION

This method toggles bold style on a text block that is defined by four coordinates (startx,
starty, stopx, stopy). If the flag argument is set to True, bold style will be added to the
specified text block, otherwise bold style will be removed from the text block.

Startx, starty, stopx, and stopy can either be absolute coordinates or one of the following
special values:

Min Specifies the first line or column.

Max Specifies the last line or column.
INPUTS

id id of the text editor object

start_x start x position
start_y start y position
stop_x stop x position
stop_y stop y position
flag boolean flag that indicates toggle state

Chapter 47: Texteditor class 249

47.40 Texteditor.SetColor

NAME

Texteditor.SetColor — change color of text block (V1.2)
SYNOPSIS

mui.DoMethod(id, "SetColor", startx, starty, stopx, stopy, color)
FUNCTION

This method changes the color of a text block that is defined by four coordinates (startx,
starty, stopx, stopy).

Startx, starty, stopx, and stopy can either be absolute coordinates or one of the following
special values:

Min Specifies the first line or column.
Max Specifies the last line or column.

From the Hollywood script the color is specified as a simple numerical value containing
8 bits for each component. When you specify the color in the XML file, it has to be
passed as a 6 character string prefixed by the #-character (just like in HTML).

To change the color that should be used for newly text, use the Texteditor.Color
attribute instead.

INPUTS
id id of the text editor object

start_x start x position
start_y start y position
stop_x stop x position
stop_y stop y position

color desired color for text

47.41 Texteditor.Setltalic

NAME

Texteditor.SetItalic — toggle italic style of text block
SYNOPSIS

mui.DoMethod(id, "SetItalic", startx, starty, stopx, stopy, flag)
FUNCTION

This method toggles italic style on a text block that is defined by four coordinates (startx,
starty, stopx, stopy). If the flag argument is set to True, italic style will be added to the
specified text block, otherwise italic style will be removed from the text block.

Startx, starty, stopx, and stopy can either be absolute coordinates or one of the following
special values:

Min Specifies the first line or column.

250 MUTI Royale manual

Max Specifies the last line or column.
INPUTS
id id of the text editor object

start_x start x position
start_y start y position
stop_x stop x position
stop_y stop y position

flag boolean flag that indicates toggle state

47.42 Texteditor.SetUnderline

NAME
Texteditor.SetUnderline — toggle underline style of text block

SYNOPSIS
mui.DoMethod(id, "SetUnderline", startx, starty, stopx, stopy, flag)

FUNCTION
This method toggles underline style on a text block that is defined by four coordinates
(startx, starty, stopx, stopy). If the flag argument is set to True, underline style will
be added to the specified text block, otherwise underline style will be removed from the
text block.

Startx, starty, stopx, and stopy can either be absolute coordinates or one of the following
special values:

Min Specifies the first line or column.

Max Specifies the last line or column.
INPUTS

id id of the text editor object

start_x start x position
start_y start y position
stop_x stop x position
stop_y stop y position

flag boolean flag that indicates toggle state

Chapter 47: Texteditor class 251

47.43 Texteditor.StyleBold

NAME
Texteditor.StyleBold — set/get bold style

FUNCTION
This tag shows whether the cursor or block is over bolded text or not. You can set up
a notification on this tag to learn about style changes. You can set this tag to True or
False if you want the style changed.

TYPE
Boolean

APPLICABILITY
SGN

47.44 Texteditor.Styleltalic

NAME
Texteditor.Styleltalic — set/get italic style

FUNCTION
This tag shows whether the cursor or block is over italics text or not. You can set up
a notification on this tag to learn about style changes. You can set this tag to True or
False if you want the style changed.

TYPE
Boolean

APPLICABILITY
SGN

47.45 Texteditor.StyleUnderline

NAME
Texteditor.StyleUnderline — set/get underline style

FUNCTION
This tag shows whether the cursor or block is over underlined text or not. You can set
up a notification on this tag to learn about style changes. You can set this tag to True
or False if you want the style changed.

TYPE
Boolean

APPLICABILITY
SGN

252 MUTI Royale manual

47.46 Texteditor.TabSize

NAME
Texteditor.TabSize — set/get tab size

FUNCTION
This tag overrides the global TAB size as configured by MUI prefs if a specific number
of spaces per TAB needs to be enforced. Valid values range from 2 to 12 spaces per
TAB character. You can pass the special value Default to reset the value to the user
configured value.
Use this attribute with care as it contradicts the MUI philosophy to let the user choose
the settings.

TYPE
Number or string (see above)

APPLICABILITY
ISG

47.47 Texteditor.Undo

NAME

Texteditor.Undo — undo last operation
SYNOPSIS

mui.DoMethod(id, "Undo")
FUNCTION

Undo last operation of text editor gadget.
INPUTS

id id of the text editor object

47.48 Texteditor.UndoAvailable

NAME
Texteditor.UndoAvailable — learn when undo is available

FUNCTION
This tag is set to True when the user is able to undo his action(s). You can create a
notify on this tag and let your undo button be ghosted when there is nothing to undo.

TYPE
Boolean

APPLICABILITY
GN

Chapter 47: Texteditor class 253

47.49 Texteditor.UndoLevels

NAME
Texteditor.UndoLevels — set/get available undo levels

FUNCTION
Using this tag an application is able to override the global undo level setting. A value
of zero will disable undo/redo completely. Upon get the current number of undo levels
will be returned.

TYPE
Number

APPLICABILITY
ISG

47.50 Texteditor.WrapBorder

NAME
Texteditor.WrapBorder — set auto word wrap border

FUNCTION
This attribute allows to define the number of characters in texteditor at which text
should be wrapped to the next line (i.e. 'autowrap’).

However, the way wrapping is done depends on the actual wrap mode that was specified
by Texteditor.WrapMode. In addition, Texteditor.WrapWords will allow to set if text
editor will wrap at word boundaries or not.

Per default the WrapBorder is set to 0 which in fact disables the wrapping and depending

on the set wrap mode, wrapping will either be completely ignored or wrapping will be
done at the window limits, which is the default.

TYPE
Number

APPLICABILITY
ISG

47.51 Texteditor.WrapMode

NAME
Texteditor.WrapMode — set/get wrap mode

FUNCTION
With this attribute, the way text wrapping is performed can be directly controlled if
Texteditor.WrapBorder was set > 0. There are two major ways of how wrapping can
be performed. ’soft wrapping’ and ’hard wrapping’. Whereas soft wrapping refers to
the process where lines will just be graphically wrapped to the next line, but are still be
considered a single line. Hard wrapping in turn immediately inserts a newline character

254

MUTI Royale manual

as soon as the cursor passed the specified amount of characters in one line and therefore
separate them in a ’hard’ direct way.

The following modes are supported:

NoWrap

SoftWrap

HardWrap

Wrapping is completely disabled, setting WrapBorder > 0 will have no effect.
That means, the window will have to be resizes by the user to e.g. see or
edit all text.

Enables soft wrapping of lines if WrapBorder > 0. That means, lines are
being wrapped at the specified border in a way that they are still logically
one line. This allows to e.g. dynamically reconcatenate lines. This should
be considered the new preferred setting for new/revised applications. If
WrapBorder == 0, soft wrapping will be performed at the current window
limits.

Enables hard wrapping of lines if WrapBorder > 0. That means, lines are
being wrapped at the specified border by directly inserting newline charac-
ters as soon as the cursor passes the specified border. While this mode is the
default, due to historical reasons, it doesn’t allow to directly reconcatenate
lines if the user e.g. removes characters. If WrapBorder == 0, soft wrapping
will be performed at the current window limits. This is the default

Due to historical reasons the default is to hard wrap a line if the WrapBorder attribute is
set > 0 and WrapMode is kept untouched. However, for new applications, soft wrapping
should be considered the preferred setting as this mode is more intuitive and allows users
of texteditor to directly concatenate lines if they e.g. remove characters while they are

writing.

TYPE

String (see above for possible values)
APPLICABILITY

ISG

47.52 Texteditor.WrapWords

NAME

Texteditor. WrapWords — wrap only between words

FUNCTION

When set to True (default), wrapping will occur at word boundaries (e.g. space or tab).
If False text editor will wrap at any character.

Change of this attribute will cause update of editor gadget (but cursor coordinates will
be reset to zeroes).

TYPE
Boolean

APPLICABILITY

ISG

255

48 Toolbar class

48.1 Overview

Toolbar class allows you to create toolbar gadgets for your windows. Toolbars can be
displayed either as images, images and text, or text only. This class requires the MUI
custom class TheBar .mcc.

TheBar .mcc is Copyright (C) 2003-2005 Alfonso Ranieri and Copyright (C) 2005-2009 The-
Bar Open Source Team

It is released and distributed under the terms of the GNU Lesser General Public License
(LGPL) and available free of charge.

Please visit http: //www . sf . net/projects/thebar/ for the very latest version and
information regarding TheBar.mcc

When declaring a toolbar gadget in XML code, you always need to add at least one toolbar
button to it. This is done using Toolbarbutton class. Here is an example XML declaration
of a toolbar with three buttons:

<toolbar horiz="true">
<button image="1">Cut</button>
<button image="2">Copy</button>
<button image="3">Paste</button>
</toolbar>

In the XML declaration above, toolbar button 1 will use Hollywood brush 1 as its image,
button 2 will use brush 2, and so on. Toolbar buttons can use many more options like
special images for selected and disabled states, help bubbles, and more. See Section 49.1
[Toolbarbutton class], page 271, for details.

48.2 Toolbar.Active

NAME
Toolbar.Active — set/get active button in mutual exclude group

FUNCTION
This attributes can be used to query or set the ID of the currently active button in the
toolbar with mutual excluding buttons involved.

Note that you may have many mutual exclude groups: this attribute will always contain
the ID of the last selected button.

TYPE
Number

APPLICABILITY
ISGN

http://www.sf.net/projects/thebar/

256 MUTI Royale manual

48.3 Toolbar.BarPos

NAME
Toolbar.BarPos — set button alignment inside toolbar

FUNCTION
This attributes defines the alignment of the buttons in a bar. This can be one of:

Left Left alignment. This is also the default.
Center Centered alignment.
Right Right alignment.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

48.4 Toolbar.BarSpacer

NAME
Toolbar.BarSpacer — turn spaces into bar spacers

FUNCTION
If this attribute is True, any space spacer becomes a bar spacer. Defaults to False

TYPE
Boolean

APPLICABILITY
ISG

48.5 Toolbar.BarSpacerSpacing

NAME
Toolbar.BarSpacerSpacing — set bar spacer spacing

FUNCTION
Defines the pixels between a bar spacer and the buttons at its left /right. Accepted range
is 0<=x<=16
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Number

APPLICABILITY
1

Chapter 48: Toolbar class 257

48.6 Toolbar.Borderless

NAME
Toolbar.Borderless — make toolbar borderless

FUNCTION
If this attribute is True, you get borderless buttons. Defaults to False.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.
TYPE
Boolean

APPLICABILITY
ISG

48.7 Toolbar.BottomBarFrameSpacing

NAME
Toolbar.BottomBarFrameSpacing — set bottom spacing

FUNCTION
Define the pixels between the bar and the bottom frame. Accepted range is 0<x<=16
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Number

APPLICABILITY
1

48.8 Toolbar.BottomInnerSpacing

NAME
Toolbar.BottomInnerSpacing — set bottom inner spacing

FUNCTION
Define the pixels between a button contents and its bottom frame. Accepted range is
0<x<=16
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Boolean

APPLICABILITY
1

258 MUTI Royale manual

48.9 Toolbar.Columns

NAME
Toolbar.Columns — set/get toolbar columns

FUNCTION
This attributes defines the number of the columns of the bar. Setting this attribute to
a value greater than 0, makes the bar act in a so called "columns mode". Defaults to 0.

TYPE
Number

APPLICABILITY
ISG

48.10 Toolbar.DisMode

NAME
Toolbar.DisMode — set disabled draw mode

FUNCTION
Allows to define how disabled buttons should be rendered in case no own image set is
available for it.

The following values are possible:

Shape Draws only a B/W shape to show the disabled status.
Grid Draw a light grid in front of the image.

FullGrid Draw a full grid.

Sunny Converts the image into a greyscale image and displays it.

Blend The disabled image is somehow blended. It requires a true color image with
an active alpha channel and a system capable to render it.

BlendGray
As the above, but rendered as gray.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.
TYPE

String (see above for possible values)

APPLICABILITY
ISG

Chapter 48: Toolbar class 259

48.11 Toolbar.DontMove

NAME
Toolbar.DontMove — create static toolbar

FUNCTION
If this attribute is True, the content of the buttons is not moved when they are active.
Defaults to False.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Boolean

APPLICABILITY
I

48.12 Toolbar.EnableKeys

NAME
Toolbar.EnableKeys — enable key shortcuts

FUNCTION
If this attribute is set to True, the key shortcuts are enabled. Key shortcuts are defined
by prepending the key with a "_" in the button text. Defaults to True.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Boolean

APPLICABILITY
ISG

48.13 Toolbar.Frame

NAME
Toolbar.Frame — draw frame around toolbar

FUNCTION
If this attribute is True, a frame is drawn around the bar. Defaults to False.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.
TYPE
Boolean

APPLICABILITY
ISG

260 MUTI Royale manual

48.14 Toolbar.Free

NAME
Toolbar.Free — allow resizing of toolbar

FUNCTION
If this attribute is True, the bar is allowed to grow freely in both, vertical and horizontal
direction.

The default is:

— If Toolbar.Horiz is True the bar can freely grow in horizontal direction, but is
limited vertically.

— If Toolbar.Horiz is False the can freely grow in vertical direction, but is limited
horizontal.

TYPE
Boolean

APPLICABILITY
ISG

48.15 Toolbar.FreeHoriz

NAME
Toolbar.FreeHoriz — allow horizontal resizing of toolbar

FUNCTION
If this attribute is True, the bar is allowed to grow freely in horizontal direction.
The default is:

— If Toolbar.Horiz is True the bar can freely grow in horizontal direction, but is
limited vertically.

— If Toolbar.Horiz is False the can freely grow in vertical direction, but is limited
horizontal.

TYPE
Boolean

APPLICABILITY
ISG

48.16 Toolbar.FreeVert

NAME
Toolbar.FreeVert — allow vertical resizing of toolbar

FUNCTION
If this attribute is True, the bar is allowed to grow freely in vertical direction.
The default is:

— If Toolbar.Horiz is True the bar can freely grow in horizontal direction, but is
limited vertically.

Chapter 48: Toolbar class 261

— If Toolbar.Horiz is False the can freely grow in vertical direction, but is limited
horizontal.

TYPE
Boolean

APPLICABILITY
ISG

48.17 Toolbar.Horiz

NAME
Toolbar.Horiz — set toolbar orientation

FUNCTION
Boolean value to indicate whether the toolbar buttons shall be layouted horizontally or
vertically. Defaults to False.

TYPE
Boolean

APPLICABILITY
1

48.18 Toolbar.HorizInnerSpacing

NAME
Toolbar.HorizInnerSpacing — set horiz inner spacing

FUNCTION
Define the pixels between a button contents and its left and right frames. Accepted
range is 0 < x <= 16
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Number

APPLICABILITY
I

48.19 Toolbar.HorizSpacing

NAME
Toolbar.HorizSpacing — set horiz spacing

FUNCTION
Define the pixels between two bar columns. Accepted range is 0 < x <= 16

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

262 MUTI Royale manual

TYPE
Number

APPLICABILITY
I

48.20 Toolbar.HorizTextGfxSpacing

NAME
Toolbar.HorizText GfxSpacing — set horiz text gfx spacing

FUNCTION
Define the pixels between the image and the Left/Right label in Text/Gfx buttons.
Accepted range is 0 < x <= 16.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE

Number

APPLICABILITY
I

48.21 Toolbar.IgnoreAppearance

NAME
Toolbar.IgnoreAppearance — ignore user preferences

FUNCTION
The user is able to change the general appearance of the object in the MUI preferences.

If this attribute is True, MCP appearance preferences are ignored. If this attribute is
False, MCP appearance preferences are used.

Defaults to False.

TYPE
Boolean

APPLICABILITY
ISG

48.22 Toolbar.LabelPos
NAME
Toolbar.LabelPos — set position of the text label

FUNCTION
Controls the position of the text in a Text/Gfx toolbar. The following positions are
supported:

Bottom Text appears below the button image. This is the default.

Chapter 48: Toolbar class 263

Top Text appears above the button image.
Right Text appears to the right of the button image.
Left Text appears to the left of the button image.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

48.23 Toolbar.LeftBarFrameSpacing

NAME
Toolbar.LeftBarFrameSpacing — set left bar frame spacing

FUNCTION
Define the pixels between the bar and its left frame. Accepted range is 0 < x <= 16.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE

Number

APPLICABILITY
I

48.24 Toolbar.MouseOver

NAME
Toolbar.MouseOver — get informed about mouse over event

FUNCTION
If Toolbar.Raised or Toolbar.Sunny is True, this attribute contains the id of the last
button where the mouse was over.

TYPE
Number

APPLICABILITY
N

264 MUTI Royale manual

48.25 Toolbar.NtRaiseActive

NAME
Toolbar.NtRaiseActive — remove frame for raised buttons

FUNCTION
If False, a frame is drawn around borderless and sunny or raised buttons. If True, no
frame is used.

Useful to activate a button when the mouse is over and so change page in a page-mode
group.
Defaults to False.

TYPE
Boolean

APPLICABILITY
ISG

48.26 Toolbar.Raised

NAME
Toolbar.Raised — use raised mode

FUNCTION
If True, a frame is drawn around a borderless button when the mouse is over it. It should
be set to False when Toolbar.Borderless is False. Defaults to False.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Boolean

APPLICABILITY
ISG

48.27 Toolbar.RightBarFrameSpacing

NAME
Toolbar.RightBarFrameSpacing — set right bar frame spacing

FUNCTION
Define the pixels between the bar and its right frame. Accepted range is 0 < x <= 16.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Number

APPLICABILITY
1

Chapter 48: Toolbar class 265

48.28 Toolbar.Rows

NAME
Toolbar.Rows — set/get toolbar rows

FUNCTION
This attribute defines the number of rows of the toolbar should be layouted with. Setting
this attribute to a value greater than 0 make the toolbar running in a so-called rows mode.
It will the act as vertically unlimited. Defaults to 0.

TYPE
Number

APPLICABILITY
ISG

48.29 Toolbar.Scale

NAME
Toolbar.Scale — set scale ratio

FUNCTION
Define the scale ratio for scaled buttons. Accepted range is 50 <= x <= 200
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE

Number

APPLICABILITY
ISG

48.30 Toolbar.Scaled

NAME
Toolbar.Scaled — enable button scaling

FUNCTION
If True, all buttons will be scaled down according to defined scale ratio. Defaults to
False.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Boolean

APPLICABILITY
ISG

266 MUTI Royale manual

48.31 Toolbar.SpacersSize

NAME
Toolbar.SpacersSize — define spacer size

FUNCTION
Defines the used size of spacers relative to the size of a button. The following values are
possible:

Quarter Quarter of a button. This is the default.
Half Half of a button.
One Same as a button.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
String (see above for possible values)

APPLICABILITY
ISG

48.32 Toolbar.SpecialSelect

NAME
Toolbar.SpecialSelect — shift button contents on select

FUNCTION
If True, the buttons contents is moved to the right/bottom when the mouse is over it.
Defaults to False.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Boolean

APPLICABILITY
I

48.33 Toolbar.Sunny

NAME
Toolbar.Sunny — use sunny mode

FUNCTION
If True, buttons are rendered in black/white, but when the mouse is over them they are
rendered colored. Defaults to False.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

Chapter 48: Toolbar class 267

TYPE
Boolean

APPLICABILITY
ISG

48.34 Toolbar.TextOverUseShine

NAME
Toolbar.TextOverUseShine — use shine pen for highlighted state

FUNCTION
If True, buttons labels are rendered with the shine rather that the text pen, when the
mouse is over them.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Boolean

APPLICABILITY
I

48.35 Toolbar.TopBarFrameSpacing

NAME
Toolbar.TopBarFrameSpacing — set top spacing

FUNCTION
Define the pixels between the bar and its top frame. Accepted range is 0<x<=16
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.
TYPE
Number

APPLICABILITY
1

48.36 Toolbar.TopInnerSpacing

NAME
Toolbar.TopInnerSpacing — set top inner spacing

FUNCTION
Define the pixels between a button contents and its top frame. Accepted range is 0 < x
<=16.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

268 MUTI Royale manual

TYPE
Boolean

APPLICABILITY
I

48.37 Toolbar.VertSpacing

NAME
Toolbar.VertSpacing — set vertical spacing

FUNCTION
Defines the pixels between two bar rows. Accepted range is 0 < x <= 16.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE

Number

APPLICABILITY
I

48.38 Toolbar.VertTextGfxSpacing

NAME
Toolbar.Vert Text GfxSpacing — set vertical text gfx spacing

FUNCTION
Defines the pixels between the image and the top/bottom placed label in text/gfx but-
tons. Accepted range is 0 < x <= 16.

This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.

TYPE
Number

APPLICABILITY
1

48.39 Toolbar.ViewMode
NAME

Toolbar.ViewMode — set view mode of toolbar

FUNCTION
Sets the style of the toolbar. The following styles are possible:

TextGfx Toolbar appears as text and images. This is also the default setting.

269

Gfx Toolbar appears as images only.
Text Toolbar appears as text only.
This overwrites the user preferences and so must be used wisely. If in doubt, don’t use
it.
TYPE

String (see above for possible values)

APPLICABILITY
ISG

271

49 Toolbarbutton class

49.1 Overview

Toolbar button class is a subclass of toolbar class. It cannot be used on its own but must
always be encapsulated inside a toolbar class definition. Toolbar button class creates a
single button for its super toolbar class. Please note that the XML tag for this class is just
<button>, not <toolbarbutton>. See Section 48.1 [Toolbar class|, page 255, for details.

49.2 Toolbarbutton.Disabled

NAME
Toolbarbutton.Disabled — enable/disable button

FUNCTION
Enable/disable button.

TYPE
Boolean

APPLICABILITY
ISG

49.3 Toolbarbutton.DisImage

NAME
Toolbarbutton.DisImage — set disabled button image

FUNCTION
Sets the image for this toolbar button that shall be displayed when the button is in
disabled state. This must be set to the identifier of a Hollywood brush.

TYPE
Number

APPLICABILITY
1

49.4 Toolbarbutton.Exclude

NAME
Toolbarbutton.Exclude — set exclusion mask

FUNCTION
Allows to specify a mutual exlusive mask to link up to 24 button together. The mask
must be specified as a bit operation of the type 1<<x where x = 0,...,23 is the ID of the
button it the mutual exclude mask.

272

TYPE
Number

APPLICABILITY
1

49.5 Toolbarbutton.Hide

NAME
Toolbarbutton.Hide — show/hide button

FUNCTION
Use this attribute to show/hide toolbar buttons.

TYPE
Boolean

APPLICABILITY
ISG

49.6 Toolbarbutton.Image

NAME
Toolbarbutton.Image — set button image

FUNCTION

MUTI Royale manual

Sets the image for this toolbar button. This must be set to the identifier of a Hollywood

brush or one of the following special values:

BarSpacer
Create a bar spacer.

ButtonSpacer
Create a spacer between two buttons.

TYPE
Number or string (see above for possible values)

APPLICABILITY
1

49.7 Toolbarbutton.Immediate
NAME

Toolbarbutton.Immediate — create immediate button

FUNCTION

If you set this to True, the button will be an immediate one.

Chapter 49: Toolbarbutton class 273

TYPE
Boolean

APPLICABILITY
1

49.8 Toolbarbutton.NoClick

NAME
Toolbarbutton.NoClick — create a dead button

FUNCTION
If you set this to True, the button won’t react to user inputs.

TYPE
Boolean

APPLICABILITY
I

49.9 Toolbarbutton.Pressed

NAME
Toolbarbutton.Pressed — learn if a button is pressed

FUNCTION
This attribute is triggered if the user presses the button.

TYPE
Boolean

APPLICABILITY
N

49.10 Toolbarbutton.Selected

NAME
Toolbarbutton.Selected — toggle selection state

FUNCTION
Use this to toggle the selection state of the button or get notified of a user toggle event.

TYPE
Boolean

APPLICABILITY
ISGN

274 MUTI Royale manual

49.11 Toolbarbutton.Sellmage

NAME
Toolbarbutton.Sellmage — set selected button image

FUNCTION
Sets the image for this toolbar button that shall be displayed when the button is in
selected state. This must be set to the identifier of a Hollywood brush.

TYPE
Number

APPLICABILITY
I

49.12 Toolbarbutton.ShortHelp

NAME
Toolbarbutton.ShortHelp — set short help for toolbar button

FUNCTION
Sets the button’s short-help (for bubble help).

The string you specify here can use text formatting codes. See Section 3.9 [Text format-
ting codes|, page 14, for details.

TYPE
String

APPLICABILITY
I

49.13 Toolbarbutton.Sleep

NAME
Toolbarbutton.Sleep — create sleeping button

FUNCTION
If this is set to True, the button is not created at all.

TYPE
Boolean

APPLICABILITY
ISG

Chapter 49: Toolbarbutton class 275

49.14 Toolbarbutton.Toggle

NAME
Toolbarbutton.Toggle — create toggle button

FUNCTION
If you set this to True, the button will be a toggle button.

TYPE
Boolean

APPLICABILITY
I

277

50 Virtgroup class

50.1 Overview

Virtgroup class generates special kinds of group objects whose children can be a lot larger
than the actual group. The group acts as a (small) window through which a rectangle area
of its contents is visible.

During layout, MUI tries to place the children of a virtual group in the visible part. If this
is impossible, space is extended as long as all children fit.

Virtual groups themselves don’t offer any scrollbars to allow user interaction. These things
are handled by scrollgroup class. Usually, you don’t want to use a virtual group without a
scrollgroup. See Section 43.1 [Scrollgroup class|, page 217, for details.

50.2 Virtgroup.Height

NAME
Virtgroup.Height — get height of virtual group

FUNCTION
Read the virtual height of a virtual group. This attribute is quite senseless, better use a
scrollgroup object to control the virtual group.

TYPE
Number

APPLICABILITY
G

50.3 Virtgroup.Horiz

NAME
Virtgroup.Horiz — set layout mode

FUNCTION
Boolean value to indicate whether the objects in this group shall be layouted horizontally
or vertically. Defaults to False.

This is the easy way of telling your group how it has to look like. If you want two-
dimensional groups, you have to use Group.Columns.

TYPE
Boolean

APPLICABILITY
I

278 MUTI Royale manual

50.4 Virtgroup.Input

NAME
Virtgroup.Input — set input mode of virtual group

FUNCTION
Specify if a virtual group should be moveable by clicking into it and dragging the mouse.
Defaults to True.

TYPE
Boolean

APPLICABILITY
I

50.5 Virtgroup.Left

NAME
Virtgroup.Left — set/get left edge of virtual group

FUNCTION
Get/set the virtual left edge of a virtual group. The left edge will automatically be
clipped to be between 0 and (VirtualWidth-DisplayWidth).

This attribute is quite senseless, better use a scrollgroup object to control the virtual
group.

TYPE
Number

APPLICABILITY
ISG

50.6 Virtgroup.Top

NAME
Virtgroup.Top — set/get top edge of virtual group

FUNCTION
Get/set the virtual top edge of a virtual group. The top edge will automatically be
clipped to be between 0 and (VirtualTop-DisplayTop).

This attribute is quite senseless, better use a scrollgroup object to control the virtual
group.

TYPE
Number

APPLICABILITY
ISG

Chapter 50: Virtgroup class 279

50.7 Virtgroup.Width

NAME
Virtgroup.Width — set/get width of virtual group

FUNCTION
Read the virtual width of a virtual group. This attribute is quite senseless, better use a
scrollgroup object to control the virtual group.

TYPE
Number

APPLICABILITY
G

281

51 Volumelist class

51.1 Overview

Volumelist generates a list of all available volumes. Since you shouldn’t use your own file
requester in every application, this class is probably not of much use.

Volumelist class creates a listview with the following five columns: Icon, name, fill state
in percent, free space and used space. If you do not want to have all of these attributes
displayed, you can use Listviewcolumn class to make adjustments.

Volumelist class is a subclass of listview class. Thus, you can use most attributes and
methods of listview class on it too. For example, if you want to read the entries of your
volumelist, just send the volumelist object a Listview.GetEntry method, or if you want
to listen to changes in the active list entry, set up a notification on Listview.Active.

When creating a volumelist object in XML code, you always have to add at least one column
to it. This is done by using the Listviewcolumn class. Here is an example of a minimal
volumelist declaration with just a single column (the icon column, that is):

<volumelist>
<column/> <!-- Icon -—>
</volumelist>

Here is a declaration that includes all five columns:

<volumelist>
<column/> <!-- Icon -->
<column/> <!-- Name -->
<column/> <!-- Percent -->
<column/> <!-- Free -—>
<column/> <!-- Used -->
</volumelist>

If you only want to have the name column and the percent column displayed, you can use
the Listviewcolumn.Col attribute to achieve this:

<volumelist>
<column col="1"/> <!-- Name -->
<column col="2"/> <!-- Percent -->
</volumelist>

See Section 25.1 [Listview class]|, page 143, for details.

See Section 26.1 [Listviewcolumn class], page 159, for details.

51.2 Volumelist.Title

NAME
Volumelist.Title — show/hide list title

FUNCTION
Specify whether you want to have title bar for the listview. The title is displayed at the
very first line and doesn’t scroll away when the list top position moves.

282

TYPE
Boolean

APPLICABILITY
ISG

MUTI Royale manual

283

52 VSpace class

52.1 Overview

VSpace class is a subclass of rectangle class and simply creates some empty vertical space
between two objects.

52.2 VSpace.Height

NAME
VSpace.Height — set vertical space

FUNCTION

Sets the desired vertical space for this object in pixels.

TYPE
Number

APPLICABILITY
I

285

53 Window class

53.1 Overview

Objects of window class are used to generate windows and supply a place where MUI
gadgets feel well. It handles the complicated task of window resizing fully automatic, you
don’t need to worry about that.

Windows are children of an application, you cannot use a window object without having a
parent application object. On the other side, the gadgets in a window are children of the
window, you cannot use MUI gadgets without having a parent MUI window.

Creating a window object does not mean to open it instantly. This is done later by setting
the window’s Window.0Open attribute. If your application has several windows, the usual
way is to create them all at once at startup time and open/close it later just by setting
Window.0Open.

There is no difference in talking to gadgets whether their parent window is open or not.
If you e.g. set the contents of a string gadget in an open window, the gadget will refresh
immediately. If the window is closed, the gadget just remembers its new setting and displays
it later.

53.2 Window.Activate
NAME

Window.Activate — change activation state of window

FUNCTION
Setting this to True will activate the window. Setting this to False has no effect. The
attribute will change whenever the user activates/deactivates the window.

Specifying False at object creation time will make the window open in an inactive state.

TYPE
Boolean

APPLICABILITY
ISGN

53.3 Window.ActiveObject

NAME
Window.ActiveObject — set/get active window object

FUNCTION
Set the active object in a window as if the user would have activated it with the tab key.
The object has to be in the cycle chain for this command to work.
Starting with MUI Royale 1.1 the applicability of this attribute is SGN. Before version
1.1 it was merely SG.

TYPE
MUTI object

286 MUTI Royale manual

APPLICABILITY
SGN

53.4 Window.AppWindow

NAME
Window.AppWindow — make window an app window

FUNCTION
Setting this attribute to True will make this window an AppWindow, the user will
be able to drop icons on it. You can hear about these events by listening to the
Notify.AppMessage attribute.

TYPE
Boolean

APPLICABILITY
I

53.5 Window.Borderless

NAME
Window.Borderless — show/hide window border

FUNCTION
Make the window borderless.

TYPE
Boolean

APPLICABILITY
1

53.6 Window.CloseGadget

NAME
Window.CloseGadget — configure window’s close gadget

FUNCTION
Set this to False and your window will not have a close gadget.

TYPE
Boolean

APPLICABILITY
1

Chapter 53: Window class 287

53.7 Window.CloseRequest

NAME
Window.CloseRequest — handle close request of window

FUNCTION
When the user hits a windows close gadget, the window isn’t closed immediately. Instead
MUT only sets this attribute to True to allow your application to react.

Usually, you will setup a notification that automatically closes the window when a close
request appears, but you could e.g. pop up a confirmation requester or do some other
things first.

TYPE
Boolean

APPLICABILITY
N

53.8 Window.DefaultObject

NAME
Window.DefaultObject — set/get window’s default object

FUNCTION
The default object in a window receives keyboard input as long as no other object is
active. Good candidates for default objects are e.g. lonely listviews. Making such a
listview the default object will allow the user to control it immediately without the need
of several tab strokes for activation.

TYPE
MUT object

APPLICABILITY
ISG

53.9 Window.DepthGadget

NAME
Window.DepthGadget — configure window’s depth gadget

FUNCTION
Enable or disable the depth gadget. Defaults to True. There is no good reason to use
this tag.

TYPE

Boolean

APPLICABILITY
I

288

53.10 Window.DragBar

NAME
Window.DragBar — configure window’s drag bar

FUNCTION
Tell MUI to give your window a dragbar.
Defaults to True.
There is no good reason to disable the dragbar!

TYPE
Boolean

APPLICABILITY
I

53.11 Window.Height

NAME
Window.Height — set/get window height

FUNCTION

MUTI Royale manual

Specify the height of a window. Usually, you won’t give a pixel value here but instead

use one of the following magic macros:
Default Calculated from objects default sizes.

MinMax:<0..100>

Somewhere between the minimum height (0) and the maximum height (100)

of your window.

Visible:<1..100>

Percentage of the screens visible height.

Screen:<1..100>
Percentage of the screens total height.

Scaled Height will be adjusted so that width : height == minimum width : mini-
mum height. Note that a windows width and height may not both be scaled.

Default for this tag is Default.

As long as your window has a MUI window id (Window.MuiID), choosing a size is not
that important. MUI will always remember a windows last position and size and these
values will simply override your settings. Positioning and sizing should be completely
under user control, a programmer doesn’t need to worry about it.

TYPE

Number or predefined macro

APPLICABILITY

IG

Chapter 53: Window class 289

53.12 Window.LeftEdge

NAME
Window.LeftEdge — set/get left edge of window

FUNCTION
Specify the left edge of a window. Usually, you shouldn’t define a pixel value here but
instead use one of the following macros:

Centered Window appears centered on the visible area of screen.
Moused Window appears centered under the mouse pointer.

Default for this tag is Centered.

As long as your window has a window id (Window.MuiID), choosing a position is not
that important. MUI will always remember a windows last position and size and these
values will simply override your settings. Positioning and sizing should be completely
under user control, a programmer doesn’t need to worry about it.

TYPE
Number or predefined macro

APPLICABILITY
IG

53.13 Window.Menustrip

NAME
Window.Menustrip — set window’s menustrip

FUNCTION
Specify a menu strip object for this window. The object is treated as a child of the
window and will be disposed when the window is disposed.

Menustrip objects defined for a window will override an applications Menustrip object.
If you have a global menu for all your applications windows but you want some windows
to have no menu, use the Window.NoMenus tag.

TYPE
MUTI object

APPLICABILITY
I

53.14 Window.MouseObject

NAME
Window.MouseObject — find object that mouse is currently over

FUNCTION
When Window.NeedsMouseObject is enabled for this window, you can setup notifica-
tionns on Window.MouseObject to find out on which object the mouse pointer is located.

290 MUTI Royale manual

TYPE
MUT object

APPLICABILITY
N

53.15 Window.MuilD

NAME
Window.MuilD — set/get window identifier

FUNCTION
For most of your windows, you should define a four character string as an id value. Only
a window with an id is able to remember its size and position.

Additionally, when you use an ascii id (e.g. 'MAIN’), your window can be controlled
from ARexx.

Of course all windows of your application must have unique ids.

Do not confuse Window.MuiID with Notify.ID. The ID you specify in Notify.ID is the
one you use to talk to MUI objects using commands like mui.Set() or mui.Get(). It
does not have anything to do with the ID you set in Window.MuiID!

TYPE
Four character string

APPLICABILITY
ISG

53.16 Window.NeedsMouseObject

NAME
Window.NeedsMouseObject — enable mouse tracking

FUNCTION
If you want to react on changes of the Window.MouseObject attribute, you have to set
this to True when creating your window.

TYPE
Boolean

APPLICABILITY
1

53.17 Window.NoMenus

NAME
Window.NoMenus — disable window menu

Chapter 53: Window class 291

FUNCTION
Temporarily disable the menu strip of a window.

TYPE
Boolean

APPLICABILITY
IS

53.18 Window.Open

NAME
Window.Open — open/close a window

FUNCTION
This little attribute can be used to open and close a window. When opening a window,
MUT does lots of stuff to calculate sizes and positions of all gadgets. Minimum and
maximum window sizes will be adjusted automatically.
When the minimum size of a window is too big to fit on the screen, MUI tries to reduce
font sizes and does a new calculation. You should always design your windows to fit on
a 640*200 screen with all fonts set to topaz/8.
When a window is closed (and you specified a Window.MuiID, MUI remembers its position
and size and uses these values during the next opening.
After setting Window.0Open to True, you should test if MUI was able to open the window
by getting the attribute again. If you don’t and if this was the only window of your
application, the user won’t be able to do any input and your application will seem to
hang.

TYPE

Boolean

APPLICABILITY
SG

53.19 Window.PubScreen

NAME
Window.PubScreen — set window’s screen (V1.1)

FUNCTION
This attribute allows you to specify the name of a public screen that the window should
open on. Please use this attribute only if really necessary because normally the user of
your application should be the one who decides on which screen he wants to run your
application using the MUI preferences.

TYPE
String

292 MUTI Royale manual

APPLICABILITY
ISG

53.20 Window.ScreenTitle

NAME
Window.ScreenTitle — set screen title of window

FUNCTION
This text will appear in the screen’s title bar when the window is active.

TYPE
String

APPLICABILITY
ISG

53.21 Window.ScreenToBack

NAME

Window.ScreenToBack — put window’s screen to back
SYNOPSIS

mui.DoMethod(id, "ScreenToBack")
FUNCTION

Put the window’s screen to back. This command is only valid when the window is
opened.

INPUTS
id id of the window object

53.22 Window.ScreenToFront

NAME
Window.ScreenToFront — put window’s screen to front

SYNOPSIS

mui.DoMethod(id, "ScreenToFront")

FUNCTION
Put the window’s screen to font. This command is only valid when the window is opened.

INPUTS
id id of the window object

Chapter 53: Window class 293

53.23 Window.Sleep

NAME
Window.Sleep — toggle sleep mode of window

FUNCTION
This attribute can be used to put a window to sleep. The window gets disabled and a
busy pointer appears.

The attribute contains a nesting count, if you tell your window to sleep twice, you will
have to tell it to wake up twice too.

A sleeping window cannot be resized.

TYPE
Boolean

APPLICABILITY
SG

53.24 Window.SizeGadget

NAME
Window.SizeGadget — configure window’s size gadget

FUNCTION
Tell MUT if you want a sizing gadget for this window. Usually you won’t need this
attribute since MUI will automatically disable the sizing gadget when your window is
not sizeable because of your gadget layout.

TYPE
Boolean

APPLICABILITY
I

53.25 Window.Snapshot

NAME

Window.Snapshot — snapshot window position
SYNOPSIS

mui.DoMethod(id, "Snapshot", flags)
FUNCTION

Window.Snapshot is the programmer’s interface to MUI’s window position remembering
facility. Snapshotting a window is only possible if Window.MuiID was set for this window.

INPUTS
id id of the window object

flags use 0 to unsnapshot the window, 1 to snapshot the window.

294 MUTI Royale manual

53.26 Window.ToBack

NAME

Window.ToBack — put window to back
SYNOPSIS

mui.DoMethod(id, "ToBack")
FUNCTION

Put the window to back. When the window is not currently open, this command does
simply nothing.

INPUTS
id id of the window object

53.27 Window.ToFront

NAME

Window.ToFront — put window to front
SYNOPSIS

mui.DoMethod(id, "ToFront")
FUNCTION

Put the window to front. When the window is not currently open, this command does
simply nothing.

INPUTS
id id of the window object

53.28 Window.TopEdge

NAME
Window.TopEdge — set/get top edge of window

FUNCTION
Specify the top edge of a window. Usually, you shouldn’t define a pixel value here but
instead use one of the following macros:

Centered Window appears centered on the visible area of screen.
Moused Window appears centered under the mouse pointer.

Delta:<p>
Window appears <p> pixels below the screens title bar.

Default for this tag is Centered.

As long as your window has a window id (Window.MuiID), choosing a position is not
that important. MUI will always remember a windows last position and size and these
values will simply override your settings. Positioning and sizing should be completely
under user control, a programmer doesn’t need to worry about it.

Chapter 53: Window class 295

TYPE
Number or predefined macro

APPLICABILITY
1G

53.29 Window.UseBottomBorderScroller

NAME
Window.UseBottomBorderScroller — enable bottom border scrollbar

FUNCTION
If set to True, the window will feature a scrollbar in its bottom border. You must set
this for the window object if any children are going to use this window border scroller,
e.g. prop gadgets with the Prop.UseWinBorder attribute.

Obviously, scroll gadgets in window borders won’t look good with borderless or non-
resizable windows.

TYPE
Boolean

APPLICABILITY
1

53.30 Window.UseLeftBorderScroller

NAME
Window.UseLeftBorderScroller — enable left border scrollbar

FUNCTION
If set to True, the window will feature a scrollbar in its left border. You must set this
for the window object if any children are going to use this window border scroller, e.g.
prop gadgets with the Prop.UseWinBorder attribute.

Obviously, scroll gadgets in window borders won’t look good with borderless or non-
resizable windows.

TYPE
Boolean

APPLICABILITY
I

53.31 Window.UseRightBorderScroller

NAME
Window.UseRightBorderScroller — enable right border scrollbar

296 MUTI Royale manual

FUNCTION

If set to True, the window will feature a scrollbar in its right border. You must set this
for the window object if any children are going to use this window border scroller, e.g.
prop gadgets with the Prop.UseWinBorder attribute.

Obviously, scroll gadgets in window borders won’t look good with borderless or non-

resizable windows.

TYPE
Boolean

APPLICABILITY
1

53.32 Window.Title

NAME
Window.Title — set title of window

FUNCTION
Specify the title of a window.

TYPE
String

APPLICABILITY
ISG

53.33 Window.Width
NAME

Window.Width — set/get window width

FUNCTION

Specify the width of a window. Usually, you won’t give a pixel value here but instead
use one of the following magic macros:

Default Calculated from objects default sizes.

MinMax:<0..100>
Somewhere between the minimum width (0) and the maximum width (100)
of your window.

Visible:<1..100>
Percentage of the screens visible width.

Screen:<1..100>
Percentage of the screens total width.

Scaled Width will be adjusted so that width : height == minimum width : mini-
mum height. Note that a windows width and height may not both be scaled.

297

Default for this tag is Default.

As long as your window has a window id (Window.MuiID), choosing a size is not that
important. MUI will always remember a windows last position and size and these values
will simply override your settings. Positioning and sizing should be completely under
user control, a programmer doesn’t need to worry about it.

TYPE
Number or predefined macro

APPLICABILITY
IG

299

Appendix A Licenses

A.1 MUI license

This application uses MUI - MagicUserInterface (c¢) Copyright 1992-97 by Stefan Stuntz.
MUI is a system to generate and maintain graphical user interfaces. With the aid of a
preferences program, the user of an application has the ability to customize the outfit
according to his personal taste.

MUT is distributed as shareware. To obtain a complete package containing lots of examples
and more information about registration please look for a file called "muiXXusr.lha" (XX
means the latest version number) on your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send DM 30.- or US$ 20.- to

Stefan Stuntz
Eduard-Spranger-Strafie 7
80935 Miinchen
GERMANY

Support and online registration is available at http://www.sasg.com/

A.2 Expat license

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.3 LGPL license

GNU Lesser General Public License Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

http://www.sasg.com/

300 MUTI Royale manual

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish); that you receive source code or
can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original

Appendix A: Licenses 301

library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library
does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the
GNU C Library in non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called "this License"). Each
licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and data)
to form executables.

The "Library", below, refers to any such software library or work which has been dis-
tributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,

302 MUTI Royale manual

and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is
true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

c¢) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when
the facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that
any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary

Appendix A: Licenses 303

GNU General Public License has appeared, then you can specify that version instead if you
wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License. Section
6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is
not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifi-
cation of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the

304 MUTI Royale manual

copyright notice for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library,
with the complete machine-readable "work that uses the Library", as object code and/or
source code, so that the user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood that the user who changes
the contents of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will
operate properly with a modified version of the library, if the user installs one, as long as
the modified version is interface-compatible with the version that the work was made with.

¢) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form of
the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,

Appendix A: Licenses 305

link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the Library), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

306 MUTI Royale manual

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LI-
BRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Index

A

Application.AboutMUI 45
Application.AboutMUIRoyale.................. 45
Application.AddWindow 45
Application.Base............ciiiiiiiiiiiiin, 46
Application.ConfigChange.................... 46
Application.DoubleStart..................... 47
Application.DropObject 47
Application.HelpFileccovvviinann. 47
Application.Icon.........ccoiiiiiiiiiiiiiia., 48
Application.Iconified....................... 48
Application.Load.........ccovuiuiiiivnnnnnn... 49
Application.Menustrip....................... 50
Application.OpenConfigWindow............... 50
Application.RemoveWindow.................... 50
Application.Save............ciiiiiiiiiiiii, 51
Application.SingleTask...................... 52
Application.Sleep............................ 52
Application.WindowList 53
Area.Background..............l 55
Area.BackgroundBrush 56
Area.BackgroundImageoiiin. 57
Area.BackgroundRGB................... 57
Area.BottomEdge 58
Area.ContextMenu............................. 58
Area.ContextMenuTrigger..................... 59
Area.ControlChar...........ccoiviiiiiunnnnnnn. 59
Area.CycleChain.............o, 59
Area.Disabledcoiiiiiiiiiiii, 60
Area.FixHeight 60
Area.FixHeightTxt............................ 60
Area.FixWidtho oot 61
Area.FixWidthTxt............................. 61
Area.Font i 61
Area.Frame................. .o, 62
Area.FramePhantomHoriz...................... 63
Area.FrameTitleoiiiiiiinnn, 63
Area.Height............ 64
Area.Hide........... il 64
Area.HorizWeight 64
Area.InnerBottom............................. 65
Area.InnerLeft 65
Area.InnerRight 65
Area.InnerToOp ...ttt 65
Area.InputModeoiiiiiiiiiiina.. 66
Area.LeftEdgel 66
Area.MaxHeight 67
Area.MaxWidth 67
Area.Pressed...........coiiiiiiiiiiiiiiiii 67
Area.RightEdge, 68
Area.Selected, 68
Area.ShortHelp, 69
Area.ShowSelState................oooiiiiin. 69

Area.TopEdge............ ..., 69

307

Area.VertWeight o it 70
Area.Weight.......... i i il 70
Area.Width...... o i i, 71

B

Busy.Movel 73
Busy.Speed.....................ooooooaL 73
Button.HiChar 75
Button.Label............cooiiiiiiiiiiiii., 75
Button.NoAutoKey.............oooiiiiiiiiia, 75
Button.Pressedl 76
Button.Selected.................. ...l 76
Button.Toggle 76

C

Checkmark.Selected..............oiivinn... 79
Coloradjust.RGB.............................. 81
Colorfield.RGBt 83
Cycle.Active.........oooiiiiiiii L. 85

D

Dirlist.AcceptPattern....................... 88
Dirlist.Directory............................ 88
Dirlist.DrawersOnly...............ooouunnnn. 89
Dirlist.FilesOnly............................ 89
Dirlist.FilterDrawers 89
Dirlist.MultiSelDirs 89
Dirlist.NumBytes..............cooiiinnnnnn. 90
Dirlist.NumDrawers........................... 90
Dirlist.NumFiles..........., 90
Dirlist.Path............ oot 91
Dirlist.RejectIcons.......................... 91
Dirlist.RejectPattern....................... 91
Dirlist.ReRead ot 92
Dirlist.SortDirs................ ..., 92
Dirlist.SortHighLow.......................... 92
Dirlist.SortType.........cciiiiiiiiiiinnnn. 93
Dirlist.Status................. 93
Dirlist.Title 93

F

Floattext.Justify......................... ... 95
Floattext.TabSize..............ccovininann.. 95
Floattext.Textooviiiiiniiiiinennnnn. 95

308

Gauge.Current, 97
Gauge.Divide.........coiiiiiiiiii 97
Gauge.Horiz............ 97
Gauge.InfoTexXtooiiniiiiiiiiiiinnn. 98
Gauge.MaX ... 98
Group.ActivePage............. 102
Group.AddHead 102
Group.AddTail 103
Group.ChildList.................iiiiia, 103
Group.Columns ...t 104
Group.ExitChange............................ 105
Group.HorizSpacing.......................... 105
Group.InitChange............................ 105
Group.Insertiiiiiia 106
Group.PageMode 106
Group.Remove e 107
Group.SameHeight 108
Group.SameSize ... 108
Group.SameWidth............................. 109
Group.Spacing 109
Group.Title............oiiiiii... 109
Group.VertSpacing...........cooiiiiiiinnn. 110
H
Hollywood.Display..........ovvuuviininnnnn... 111
Hollywood.MaxHeight 111
Hollywood.MaxWidth.......................... 112
Hollywood.MinHeight 112
Hollywood.MinWidth.......................... 112
HSpace.Width ...l 115
I

Image.Brush.................... 117
Image.FreeHoriz............................. 117
Image.FreeVert 117
Image.Source ..., 118
Image.State............. ...l 119
Imagebutton.Pressed 121
L

Label.Centered...............coiiiiiiiiii.. 123
Label.DoubleFrame........................... 123
Label.FreeVert, 123
Label.Key.......ooooiiiiiiiiiiiiiiiiiiiit. 124
Label.LeftAligned...........ccoiiuinnnnnnn. 124
Label.SingleFrame............ccovvuuinnnnnnn. 124
Listtree.Active............... 128
Listtree.AutoLineHeight.................... 128
Listtree.Closecovviiiiiiiiinnnnnnnn. 129
Listtree.DoubleClick....................... 129
Listtree.DragDropSort...................... 130
Listtree.EmptyNodes 130
Listtree.Exchange........................... 130

MUTI Royale manual

Listtree.FindName........................... 133
Listtree.GetEntry.................oiaan. 131
Listtree.Insert.............coviiiiininn... 134
Listtree.MinLineHeight 135
Listtree.Movecovviiiniiineinennnn. 135
Listtree.Open............................... 136
Listtree.Quiet i, 137
Listtree.Removec.covivivinnnnnnnnn. 138
Listtree.Rename..................covininn... 138
Listtree.Sort ...t 139
Listtree.SortHook............ovvuviinnon... 139
Listtree.Title...... ..., 140
Listtreenode.Frozenun... 141
Listtreenode.Name.....................cun... 141
Listtreenode.NoSign 141
Listtreenode.Open..........c.oovvvviinnnn... 142
Listview.Active..........iviiiiiinnnnnn.n. 144
Listview.AdjustHeight 144
Listview.AdjustWidth....................... 144
Listview.AutoLineHeight.................... 145
Listview.AutoVisible....................... 145
Listview.Clearoviiiinennnennnnnnnnn 145
Listview.ClickColumn 146
Listview.DefClickColumn.................... 146
Listview.DoubleClickcovinnn. 146
Listview.Entries............................ 147
Listview.Exchange........................... 147
Listview.First........... 147
Listview.GetEntry........................... 148
Listview.GetSelection...................... 148
Listview.Inputcoiviiiiiiiinnnnnn.. 149
Listview.Insert........... ..., 149
Listview.InsertPosition.................... 150
Listview.Jump 150
Listview.MinLineHeight..................... 150
Listview.Move ...t 151
Listview.MultiSelect 151
Listview.Quietiiiiiiinaan.. 152
Listview.Remove..............cciiiininn... 152
Listview.Rename............................. 153
Listview.ScrollerPoscoun... 154
Listview.Select..........coiiiiiinnenenn... 153
Listview.SelectChange 154
Listview.Sort ...vviiiin it 155
Listview.SortFunc..................ccvun... 155
Listview.TitleClick, 156
Listview.Visible.............. ... 156
Listviewcolumn.Bar.......................... 159
Listviewcolumn.Col..............coiviunn.... 159
Listviewcolumn.Delta 159
Listviewcolumn.Hidden...................... 160
Listviewcolumn.MaxWidth.................... 161
Listviewcolumn.MinWidth.................... 160
Listviewcolumn.PreParse.................... 161
Listviewcolumn.Title 161
Listviewcolumn.Weight 162

Index

M

Menu.AddHead, 163
Menu.AddTail ..., 163
Menu.Disabled, 164
Menu.InSert......ooviiiiniiieiieneennnnn. 164
Menu.Remove......... ..., 164
Menu.Title......cvviiiini it 165
Menuitem.CommandString..................... 167
Menuitem.Disabled...............coviiinnn... 167
Menuitem.Exclude....................ooii.. 167
Menuitem.Selected..................ciin... 168
Menuitem.Shortcut.............c.covvvunnenn... 168
Menuitem.Title i, 168
Menuitem.Type 169
Menustrip.AddHead.........................e. 172
Menustrip.AddTail..............coovuinnnnn. 172
Menustrip.Insert............................ 173
Menustrip.Remove............................ 173
mui.CreateGUIt 35
mui.CreateObjectiiiia... 36
mui.DoMethod............. ... i, 37
mui.FreeGUI.....t 38
mui.FreeImagecoiiiiiiiiiiiiiina., 38
mui.FreeObject oL 39
MUi.Get ..o 39
mui.HaveObject 40
mui.IsVersiondcouiiiininnnnennnn.. 40
mui.Notify.....oooiuuiiiiiiiiiiii 40
mui.Request.............. ...l 41
MUL.Set .ttt e 42

N

Notify.AppMessage.........coovuvuunnnnnnnnn. 175
Notify.Classooviunniiiiiiiiiiiiinnn 175
Notify.ExportID.....................oiin. 176
Notify.HelpLine............................. 176
Notify.HelpNode................cooiiinnnnnn. 176
Notdfy . ID ..ottt 177
Notify .MUIClassccooiiiniiinannn. 177
Notify.NoNotify...................... 177
Notify.NotifyData.............ccooiiiiis, 178
Notify.Revision............................. 178
Notify.UserData.......................... ... 179
Notify.Version................oooiiiiiiiit. 179

P

Popdrawer.Acknowledge 183
Popdrawer.Active.................., 183
Popdrawer.AdvanceOnCR...................... 183
Popdrawer.Contents.......................... 184
Popdrawer.SaveMode.......................... 184
Popdrawer.Title...................ooiinnnnn. 184
Popfile.AcceptPattern...................... 187
Popfile.Acknowledgecovvinnn.. 187
Popfile.Active 187

Popfile.AdvanceOnCR 188

309
Popfile.Contents................. ... it 188
Popfile.Pattern............................. 189
Popfile.RejectIcons 189
Popfile.RejectPattern...................... 189
Popfile.SaveMode............... 189
Popfile.ShowPattern........................ 190
Popfile.Title 190
Popfont.Acknowledge 191
Popfont.Active ..., 191
Popfont.AdvanceOnCR 192
Popfont.Contents............. 192
Popfont.FixedWidthOnly..................... 192
Popfont.MaxHeight........................... 193
Popfont.MinHeight........................... 193
Popfont.Title 193
Poplist.Acknowledge 195
Poplist.AdvanceOnCR 195
Poplist.Contents............. 196
Poppen.RGB. ... 197
Poppen.Title ...t 197
Prop.Decreasel 199
Prop.Entriesol 199
Prop.First...... ..o 199
Prop.Horiz......... ..., 200
Prop.Increase 200
Prop.Slider............. o it 200
Prop.UseWinBorder...................... ... 201
Prop.Visible ..., 201
R
Radio.Activel 203
Rectangle.BarTitle.......................... 205
Rectangle.HBarccoiiiiiiinnnnnnn. 205
Rectangle.VBar.............................. 206
Register.ActivePage 207
Register.AddPage............... 208
Register.Closable........................... 208
Register.ClosePage.......................... 208
Register.CloseRequest 209
Register.GetPageID.......................... 209
Register.InsertPage 210
Register.Pages.................. 210
Register.Position....................ouuet. 211

310

S

Scale.Horiz......... ..., 213
Scrollbar.IncDecSize 215
Scrollbar.Typeoooiiii... 215
Scrollgroup.FreeHoriz...................... 217
Scrollgroup.FreeVert 217
Scrollgroup.UseWinBorder................... 218
Slider.Format, 219
Slider.Horiz oo, 219
Slider.Levelcoiiiiiiiiiiinnn. .. 220
Slider.Max........c.oviiiiiiiiiiiiiiiia.. 220
Slider . Min...........coiiiiiiiiiiinnn.. 220
Slider.Pressedoiiiiii.... 221
Slider.Quietcoiviiiiiiiiii 221
Slider.Reversecooiiiinnoo..n. 221
Slider.Stringify......................... ... 221
String.Accept ...l 223
String.Acknowledge.............oiiiiiiiiaa, 223
String.AdvanceOnCR....................oun. 223
String.Contents............................. 224
String.Copy.....oovviiii 224
String.CursorPos............. ..o, 224
String.Cut......... it 225
String.Insert 225
String.MarkEnd 225
String.MarkStart..................... ... 226
String.MaxLen 226
String.Paste ... 226
String.Redo...............l 227
String.Rejectl 227
String.Secretl 227
String.Undo. ... 228
T

Text.Contents 229
Text.HiChar................, 229
Text.PreParse i, 230
Text.SetMax.......oooiiiiiiiiiiiiiiii 230
Text.SetMin......... il 230
Text.SetVMax ..., 231
Texteditor.ActiveObjectOnClick............ 233
Texteditor.Align............................ 233
Texteditor.AreaMarked...................... 234
Texteditor.AutoClip 234
Texteditor.Clear.................coooiiinnn. 234
Texteditor.Color.................... 235
Texteditor.ColorMap 235
Texteditor.Columns.......................... 236
Texteditor.Contents 236
Texteditor.ConvertTabs..................... 236
Texteditor.Copyooviiiiiii i, 237
Texteditor.CursorX.......................... 237
Texteditor.CursorY.......................... 237
Texteditor.Cut............... ..., 237
Texteditor.Erase............................ 238
Texteditor.ExportHook...................... 238
Texteditor.ExportWrap...................... 239

MUTI Royale manual

Texteditor.FixedFont 239
Texteditor.GetSelection.................... 239
Texteditor.GetText..........coiviunvinn... 240
Texteditor.HasChanged...................... 240
Texteditor.ImportHook...................... 241
Texteditor.ImportWrap..............coouunn. 242
Texteditor.Insert............covvvuunennn... 243
Texteditor.Mark.............coiiiiniininnn. 243
Texteditor.MarkAll..............ccvvivnnnn.. 244
Texteditor.MarkNoneo... 244
Texteditor.Paste..............cciiiiiininn.. 244
Texteditor.PasteColors..................... 245
Texteditor.PasteStyles..................... 245
Texteditor.ReadOnly 245
Texteditor.Redo...............ccoiiiieeiinn.. 246
Texteditor.RedoAvailable................... 246
Texteditor.Replace.......................... 246
Texteditor.ROWScoiiiiiniiniin ... 247
Texteditor.Scrollbarooun. 247
Texteditor.Search....................cooo... 247
Texteditor.SetBold....................oooun. 248
Texteditor.SetColorvvvvvvnnennn... 248
Texteditor.SetItalic...........coovvun.nn.. 249
Texteditor.SetUnderline.................... 250
Texteditor.StyleBold 250
Texteditor.StylelItalic..................... 251
Texteditor.StyleUnderline.................. 251
Texteditor.TabSize..........ot 251
Texteditor.Undo..............ccvviiinininn... 252
Texteditor.UndoAvailable................... 252
Texteditor.UndoLevels...................... 252
Texteditor.WrapBorder...................... 253
Texteditor.WrapMode 253
Texteditor.WrapWords 254
Toolbar.ACtivecooviiiiiiniin i 255
Toolbar.BarPosccoiiiiiinninnnn.. 255
Toolbar.BarSpacer............cooviinnnnnnnn. 256
Toolbar.BarSpacerSpacing................... 256
Toolbar.Borderless...........ovvvuivnnunann. 256
Toolbar.BottomBarFrameSpacing............. 257
Toolbar.BottomInnerSpacing 257
Toolbar.Columnscovvmininennenennnnn 257
Toolbar.DisMode..........covviviiniiinennnn. 258
Toolbar.DontMove............ccooivvininnnn.. 258
Toolbar.EnableKeys.......................... 259
Toolbar.Frameciiiiiiinnnnann. 259
Toolbar.Freeciiiiiiinninnnn.. 259
Toolbar.FreeHoriz............... ..., 260
Toolbar.FreeVert............................ 260
Toolbar .HOXizovviveineiin i, 261
Toolbar.HorizInnerSpacing.................. 261
Toolbar.HorizSpacing 261
Toolbar.HorizTextGfxSpacing 262
Toolbar.IgnoreAppearance................... 262
Toolbar.LabelPoS.......oovviiineinennnnnnn. 262
Toolbar.LeftBarFrameSpacing............... 263
Toolbar.MouseOver............ccovuvunennen... 263
Toolbar.NtRaiseActive............... 263
Toolbar.Raisedcciviiinion.. 264

Index

Toolbar.RightBarFrameSpacing.............. 264
Toolbar . ROWS ...ttt 264
Toolbar.Scaleccoiiiiiiiininenannnn. 265
Toolbar.Scaled.............ooivvviiiinnnn... 265
Toolbar.SpacersSize 265
Toolbar.SpecialSelect...................... 266
Toolbar.Sunny 266
Toolbar.TextOverUseShine................... 267
Toolbar.TopBarFrameSpacing 267
Toolbar.TopInnerSpacing.................... 267
Toolbar.VertSpacing 268
Toolbar.VertTextGfxSpacing 268
Toolbar.ViewMode............................ 268
Toolbarbutton.Disabled..................... 271
Toolbarbutton.DisImage..................... 271
Toolbarbutton.Exclude...................... 271
Toolbarbutton.Hide.......................... 272
Toolbarbutton.Image 272
Toolbarbutton.Immediate.................... 272
Toolbarbutton.NoClick...................... 273
Toolbarbutton.Pressed...................... 273
Toolbarbutton.Selected..................... 273
Toolbarbutton.SelImage..................... 273
Toolbarbutton.ShortHelp.................... 274
Toolbarbutton.Sleep 274
Toolbarbutton.Toggle 274
A%

Virtgroup.Height............................ 277
Virtgroup.Horiz............................. 277
Virtgroup. Input........oovviiiiinnneeennnn. 277
Virtgroup.Left 278
Virtgroup.Top ..., 278
Virtgroup.Width............................. 278
Volumelist.Title....................ooiiin. 281
VSpace.Height 283

311
\%\%
Window.Activate............................. 285
Window.ActiveObject 285
Window.AppWindow............... 286
Window.Borderless.................ooooi.t. 286
Window.CloseGadget.......................... 286
Window.CloseRequest 286
Window.DefaultObject 287
Window.DepthGadget.......................... 287
Window.DragBar 287
Window.Height 288
Window.LeftEdge............................. 288
Window.Menustrip.........oooiiiiiiiiiiiit 289
Window.MouseObject.......................... 289
Window.MuiID ..., 290
Window.NeedsMouseObject.................... 290
Window.NoMenusooviuuiiiiinnn... 290
Window.Open.................................. 291
Window.PubScreen...................... 291
Window.ScreenTitle.......................... 292
Window.ScreenToBack 292
Window.ScreenToFront 292
Window.SizeGadget........................... 293
Window.Sleep ..., 292
Window.Snapshot 293
Window.Titleooiiiiiiiiiiiinno., 296
Window.ToBackooiiiiiiinnn.... 293
Window.ToFrontooviiiiiit, 294
Window.TopEdge, 294
Window.UseBottomBorderScroller............ 295
Window.UseLeftBorderScroller.............. 295
Window.UseRightBorderScroller............. 295
Window.Width 296

	General information
	Introduction
	Terms and conditions
	Requirements
	Support for palette screens

	About MUI Royale
	History
	Future
	Frequently asked questions
	Credits

	Fundamental MUI concepts
	Application tree
	Class hierarchy
	Automatic layout engine
	Group objects
	Object handling
	Notifications
	Applicability
	Cycle chain
	Text formatting codes
	Implementing online help
	Context menus
	Drag'n'drop
	Character encoding
	Hollywood bridge
	Style guide

	Tutorial
	Tutorial

	Function reference
	mui.CreateGUI
	mui.CreateObject
	mui.DoMethod
	mui.FreeGUI
	mui.FreeImage
	mui.FreeObject
	mui.Get
	mui.HaveObject
	mui.IsVersion4
	mui.Notify
	mui.Request
	mui.Set

	Application class
	Overview
	Application.AboutMUI
	Application.AboutMUIRoyale
	Application.AddWindow
	Application.Base
	Application.ConfigChange
	Application.DoubleStart
	Application.DropObject
	Application.HelpFile
	Application.Icon
	Application.Iconified
	Application.Load
	Application.Menustrip
	Application.OpenConfigWindow
	Application.RemoveWindow
	Application.Save
	Application.SingleTask
	Application.Sleep
	Application.WindowList

	Area class
	Overview
	Area.Background
	Area.BackgroundBrush
	Area.BackgroundImage
	Area.BackgroundRGB
	Area.BottomEdge
	Area.ContextMenu
	Area.ContextMenuTrigger
	Area.ControlChar
	Area.CycleChain
	Area.Disabled
	Area.FixHeight
	Area.FixHeightTxt
	Area.FixWidth
	Area.FixWidthTxt
	Area.Font
	Area.Frame
	Area.FramePhantomHoriz
	Area.FrameTitle
	Area.Height
	Area.Hide
	Area.HorizWeight
	Area.InnerBottom
	Area.InnerLeft
	Area.InnerRight
	Area.InnerTop
	Area.InputMode
	Area.LeftEdge
	Area.MaxHeight
	Area.MaxWidth
	Area.Pressed
	Area.RightEdge
	Area.Selected
	Area.ShortHelp
	Area.ShowSelState
	Area.TopEdge
	Area.VertWeight
	Area.Weight
	Area.Width

	Busy class
	Overview
	Busy.Move
	Busy.Speed

	Button class
	Overview
	Button.HiChar
	Button.Label
	Button.NoAutoKey
	Button.Pressed
	Button.Selected
	Button.Toggle

	Checkmark class
	Overview
	Checkmark.Selected

	Coloradjust class
	Overview
	Coloradjust.RGB

	Colorfield class
	Overview
	Colorfield.RGB

	Cycle class
	Overview
	Cycle.Active

	Dirlist class
	Overview
	Dirlist.AcceptPattern
	Dirlist.Directory
	Dirlist.DrawersOnly
	Dirlist.FilesOnly
	Dirlist.FilterDrawers
	Dirlist.MultiSelDirs
	Dirlist.NumBytes
	Dirlist.NumDrawers
	Dirlist.NumFiles
	Dirlist.Path
	Dirlist.RejectIcons
	Dirlist.RejectPattern
	Dirlist.ReRead
	Dirlist.SortDirs
	Dirlist.SortHighLow
	Dirlist.SortType
	Dirlist.Status
	Dirlist.Title

	Floattext class
	Overview
	Floattext.Justify
	Floattext.TabSize
	Floattext.Text

	Gauge class
	Overview
	Gauge.Current
	Gauge.Divide
	Gauge.Horiz
	Gauge.InfoText
	Gauge.Max

	Group class
	Overview
	Group.ActivePage
	Group.AddHead
	Group.AddTail
	Group.ChildList
	Group.Columns
	Group.ExitChange
	Group.HorizSpacing
	Group.InitChange
	Group.Insert
	Group.PageMode
	Group.Remove
	Group.SameHeight
	Group.SameSize
	Group.SameWidth
	Group.Spacing
	Group.Title
	Group.VertSpacing

	Hollywood class
	Overview
	Hollywood.Display
	Hollywood.MaxHeight
	Hollywood.MaxWidth
	Hollywood.MinHeight
	Hollywood.MinWidth

	HSpace class
	Overview
	HSpace.Width

	Image class
	Overview
	Image.Brush
	Image.FreeHoriz
	Image.FreeVert
	Image.Source
	Image.State

	Imagebutton class
	Overview
	Imagebutton.Pressed

	Label class
	Overview
	Label.Centered
	Label.DoubleFrame
	Label.FreeVert
	Label.Key
	Label.LeftAligned
	Label.SingleFrame

	Listtree class
	Overview
	Listtree.Active
	Listtree.AutoLineHeight
	Listtree.Close
	Listtree.DoubleClick
	Listtree.DragDropSort
	Listtree.EmptyNodes
	Listtree.Exchange
	Listtree.GetEntry
	Listtree.FindName
	Listtree.Insert
	Listtree.MinLineHeight
	Listtree.Move
	Listtree.Open
	Listtree.Quiet
	Listtree.Remove
	Listtree.Rename
	Listtree.Sort
	Listtree.SortHook
	Listtree.Title

	Listtreenode class
	Overview
	Listtreenode.Frozen
	Listtreenode.Name
	Listtreenode.NoSign
	Listtreenode.Open

	Listview class
	Overview
	Listview.Active
	Listview.AdjustHeight
	Listview.AdjustWidth
	Listview.AutoLineHeight
	Listview.AutoVisible
	Listview.Clear
	Listview.ClickColumn
	Listview.DefClickColumn
	Listview.DoubleClick
	Listview.Entries
	Listview.Exchange
	Listview.First
	Listview.GetEntry
	Listview.GetSelection
	Listview.Input
	Listview.Insert
	Listview.InsertPosition
	Listview.Jump
	Listview.MinLineHeight
	Listview.Move
	Listview.MultiSelect
	Listview.Quiet
	Listview.Remove
	Listview.Rename
	Listview.Select
	Listview.ScrollerPos
	Listview.SelectChange
	Listview.Sort
	Listview.SortFunc
	Listview.TitleClick
	Listview.Visible

	Listviewcolumn class
	Overview
	Listviewcolumn.Bar
	Listviewcolumn.Col
	Listviewcolumn.Delta
	Listviewcolumn.Hidden
	Listviewcolumn.MinWidth
	Listviewcolumn.MaxWidth
	Listviewcolumn.PreParse
	Listviewcolumn.Title
	Listviewcolumn.Weight

	Menu class
	Overview
	Menu.AddHead
	Menu.AddTail
	Menu.Disabled
	Menu.Insert
	Menu.Remove
	Menu.Title

	Menuitem class
	Overview
	Menuitem.CommandString
	Menuitem.Disabled
	Menuitem.Exclude
	Menuitem.Selected
	Menuitem.Shortcut
	Menuitem.Title
	Menuitem.Type

	Menustrip class
	Overview
	Menustrip.AddHead
	Menustrip.AddTail
	Menustrip.Insert
	Menustrip.Remove

	Notify class
	Overview
	Notify.AppMessage
	Notify.Class
	Notify.ExportID
	Notify.HelpLine
	Notify.HelpNode
	Notify.ID
	Notify.MUIClass
	Notify.NoNotify
	Notify.NotifyData
	Notify.Revision
	Notify.UserData
	Notify.Version

	Numericbutton class
	Overview

	Popdrawer class
	Overview
	Popdrawer.Acknowledge
	Popdrawer.Active
	Popdrawer.AdvanceOnCR
	Popdrawer.Contents
	Popdrawer.SaveMode
	Popdrawer.Title

	Popfile class
	Overview
	Popfile.AcceptPattern
	Popfile.Acknowledge
	Popfile.Active
	Popfile.AdvanceOnCR
	Popfile.Contents
	Popfile.Pattern
	Popfile.RejectIcons
	Popfile.RejectPattern
	Popfile.SaveMode
	Popfile.ShowPattern
	Popfile.Title

	Popfont class
	Overview
	Popfont.Acknowledge
	Popfont.Active
	Popfont.AdvanceOnCR
	Popfont.Contents
	Popfont.FixedWidthOnly
	Popfont.MaxHeight
	Popfont.MinHeight
	Popfont.Title

	Poplist class
	Overview
	Poplist.Acknowledge
	Poplist.AdvanceOnCR
	Poplist.Contents

	Poppen class
	Overview
	Poppen.RGB
	Poppen.Title

	Prop class
	Overview
	Prop.Decrease
	Prop.Entries
	Prop.First
	Prop.Horiz
	Prop.Increase
	Prop.Slider
	Prop.UseWinBorder
	Prop.Visible

	Radio class
	Overview
	Radio.Active

	Rectangle class
	Overview
	Rectangle.BarTitle
	Rectangle.HBar
	Rectangle.VBar

	Register class
	Overview
	Register.ActivePage
	Register.AddPage
	Register.Closable
	Register.ClosePage
	Register.CloseRequest
	Register.GetPageID
	Register.InsertPage
	Register.Pages
	Register.Position

	Scale class
	Overview
	Scale.Horiz

	Scrollbar class
	Overview
	Scrollbar.IncDecSize
	Scrollbar.Type

	Scrollgroup class
	Overview
	Scrollgroup.FreeHoriz
	Scrollgroup.FreeVert
	Scrollgroup.UseWinBorder

	Slider class
	Overview
	Slider.Format
	Slider.Horiz
	Slider.Level
	Slider.Max
	Slider.Min
	Slider.Pressed
	Slider.Quiet
	Slider.Reverse
	Slider.Stringify

	String class
	Overview
	String.Accept
	String.Acknowledge
	String.AdvanceOnCR
	String.Contents
	String.Copy
	String.CursorPos
	String.Cut
	String.Insert
	String.MarkEnd
	String.MarkStart
	String.MaxLen
	String.Paste
	String.Redo
	String.Reject
	String.Secret
	String.Undo

	Text class
	Overview
	Text.Contents
	Text.HiChar
	Text.PreParse
	Text.SetMax
	Text.SetMin
	Text.SetVMax

	Texteditor class
	Overview
	Texteditor.ActiveObjectOnClick
	Texteditor.Align
	Texteditor.AreaMarked
	Texteditor.AutoClip
	Texteditor.Clear
	Texteditor.Color
	Texteditor.ColorMap
	Texteditor.Columns
	Texteditor.Contents
	Texteditor.ConvertTabs
	Texteditor.Copy
	Texteditor.CursorX
	Texteditor.CursorY
	Texteditor.Cut
	Texteditor.Erase
	Texteditor.ExportHook
	Texteditor.ExportWrap
	Texteditor.FixedFont
	Texteditor.GetSelection
	Texteditor.GetText
	Texteditor.HasChanged
	Texteditor.ImportHook
	Texteditor.ImportWrap
	Texteditor.Insert
	Texteditor.Mark
	Texteditor.MarkAll
	Texteditor.MarkNone
	Texteditor.Paste
	Texteditor.PasteColors
	Texteditor.PasteStyles
	Texteditor.ReadOnly
	Texteditor.Redo
	Texteditor.RedoAvailable
	Texteditor.Replace
	Texteditor.Rows
	Texteditor.Scrollbar
	Texteditor.Search
	Texteditor.SetBold
	Texteditor.SetColor
	Texteditor.SetItalic
	Texteditor.SetUnderline
	Texteditor.StyleBold
	Texteditor.StyleItalic
	Texteditor.StyleUnderline
	Texteditor.TabSize
	Texteditor.Undo
	Texteditor.UndoAvailable
	Texteditor.UndoLevels
	Texteditor.WrapBorder
	Texteditor.WrapMode
	Texteditor.WrapWords

	Toolbar class
	Overview
	Toolbar.Active
	Toolbar.BarPos
	Toolbar.BarSpacer
	Toolbar.BarSpacerSpacing
	Toolbar.Borderless
	Toolbar.BottomBarFrameSpacing
	Toolbar.BottomInnerSpacing
	Toolbar.Columns
	Toolbar.DisMode
	Toolbar.DontMove
	Toolbar.EnableKeys
	Toolbar.Frame
	Toolbar.Free
	Toolbar.FreeHoriz
	Toolbar.FreeVert
	Toolbar.Horiz
	Toolbar.HorizInnerSpacing
	Toolbar.HorizSpacing
	Toolbar.HorizTextGfxSpacing
	Toolbar.IgnoreAppearance
	Toolbar.LabelPos
	Toolbar.LeftBarFrameSpacing
	Toolbar.MouseOver
	Toolbar.NtRaiseActive
	Toolbar.Raised
	Toolbar.RightBarFrameSpacing
	Toolbar.Rows
	Toolbar.Scale
	Toolbar.Scaled
	Toolbar.SpacersSize
	Toolbar.SpecialSelect
	Toolbar.Sunny
	Toolbar.TextOverUseShine
	Toolbar.TopBarFrameSpacing
	Toolbar.TopInnerSpacing
	Toolbar.VertSpacing
	Toolbar.VertTextGfxSpacing
	Toolbar.ViewMode

	Toolbarbutton class
	Overview
	Toolbarbutton.Disabled
	Toolbarbutton.DisImage
	Toolbarbutton.Exclude
	Toolbarbutton.Hide
	Toolbarbutton.Image
	Toolbarbutton.Immediate
	Toolbarbutton.NoClick
	Toolbarbutton.Pressed
	Toolbarbutton.Selected
	Toolbarbutton.SelImage
	Toolbarbutton.ShortHelp
	Toolbarbutton.Sleep
	Toolbarbutton.Toggle

	Virtgroup class
	Overview
	Virtgroup.Height
	Virtgroup.Horiz
	Virtgroup.Input
	Virtgroup.Left
	Virtgroup.Top
	Virtgroup.Width

	Volumelist class
	Overview
	Volumelist.Title

	VSpace class
	Overview
	VSpace.Height

	Window class
	Overview
	Window.Activate
	Window.ActiveObject
	Window.AppWindow
	Window.Borderless
	Window.CloseGadget
	Window.CloseRequest
	Window.DefaultObject
	Window.DepthGadget
	Window.DragBar
	Window.Height
	Window.LeftEdge
	Window.Menustrip
	Window.MouseObject
	Window.MuiID
	Window.NeedsMouseObject
	Window.NoMenus
	Window.Open
	Window.PubScreen
	Window.ScreenTitle
	Window.ScreenToBack
	Window.ScreenToFront
	Window.Sleep
	Window.SizeGadget
	Window.Snapshot
	Window.ToBack
	Window.ToFront
	Window.TopEdge
	Window.UseBottomBorderScroller
	Window.UseLeftBorderScroller
	Window.UseRightBorderScroller
	Window.Title
	Window.Width

	Licenses
	MUI license
	Expat license
	LGPL license

	Index

